دورية أكاديمية

Operational nuclear research reactors in the Asia-Pacific with potential for medical radionuclide production.

التفاصيل البيبلوغرافية
العنوان: Operational nuclear research reactors in the Asia-Pacific with potential for medical radionuclide production.
المؤلفون: Tan HY; School of Biosciences., Wong YH; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University.; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University., Kasbollah A; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University., Md Shah MN; Medical Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor., Perkins AC; Department of Biomedical Imaging, University of Malaya Medical Centre, Kuala Lumpur, Malaysia and  Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, UK., Yeong CH; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University.; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University.
المصدر: Nuclear medicine communications [Nucl Med Commun] 2023 Apr 01; Vol. 44 (4), pp. 227-243. Date of Electronic Publication: 2023 Feb 21.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: England NLM ID: 8201017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1473-5628 (Electronic) Linking ISSN: 01433636 NLM ISO Abbreviation: Nucl Med Commun Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Lippincott Williams & Wilkins
Original Publication: London : Chapman and Hall in association with the British Nuclear Medicine Society, c1980-
مواضيع طبية MeSH: Radiopharmaceuticals*/therapeutic use , Radioisotopes*/therapeutic use, Humans ; Tomography, Emission-Computed, Single-Photon ; Positron-Emission Tomography ; Radionuclide Imaging
مستخلص: Personalised cancer treatment is of growing importance and can be achieved via targeted radionuclide therapy. Radionuclides with theranostic properties are proving to be clinically effective and are widely used because diagnostic imaging and therapy can be accomplished using a single formulation that avoids additional procedures and unnecessary radiation burden to the patient. For diagnostic imaging, single photon emission computed tomography (SPECT) or positron emission tomography (PET) is used to obtain functional information noninvasively by detecting the gamma (γ) rays emitted from the radionuclide. For therapeutics, high linear energy transfer (LET) radiations such as alpha (α), beta (β - ) or Auger electrons are used to kill cancerous cells in close proximity, whereas sparing the normal tissues surrounding the malignant tumour cells. One of the most important factors that lead to the sustainable development of nuclear medicine is the availability of functional radiopharmaceuticals. Nuclear research reactors play a vital role in the production of medical radionuclides for incorporation into clinical radiopharmaceuticals. The disruption of medical radionuclide supplies in recent years has highlighted the importance of ongoing research reactor operation. This article reviews the current status of operational nuclear research reactors in the Asia-Pacific region that have the potential for medical radionuclide production. It also discusses the different types of nuclear research reactors, their operating power, and the effects of thermal neutron flux in producing desirable radionuclides with high specific activity for clinical applications.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
References: WHO. Cancer. 2020.
IAEA. Radioisotope production in research reactors. International Atomic Energy Agency; 2020.
WNA. Radioisotopes in medicine. World Nuclear Association; 2020.
IAEA. Radionuclide therapy. International Atomic Energy Agency; 2019.
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schoenberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821–4828.
Ballinger JR. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol 2018; 91:20170969.
Lyra ME, Andreou M, Georgantzoglou A, Kordolaimi S, Lagopati N, Ploussi A, et al. Radionuclides used in nuclear medicine therapy–from production to dosimetry. Curr Med Imaging Rev 2013; 9:51–75.
Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ-Sci B 2014; 15:845–863.
Banerjee S, Pillai M, Knapp F. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934–2974.
Hashikin NAA, Yeong CH, Abdullah BJJ, Ng KH, Chung LY, Dahalan R, et al. Neutron activated Samarium-153 microparticles for transarterial radioembolization of liver tumour with post-procedure imaging capabilities. PLoS One 2015; 10:e0138106.
Das T, Banerjee S. Theranostic applications of Lutetium-177 in radionuclide therapy. Curr Radiopharm 2016; 9:94–101.
Klaassen NJ, Arntz MJ, Arranja AG, Roosen J, Nijsen JFW. The various therapeutic applications of the medical isotope Holmium-166: a narrative review. EJNMMI Radiopharm Chem 2019; 4:1–26.
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med 2019; 6:1–19.
Qaim S. Comparison of reactor and cyclotron production of medically important radioisotopes, with special reference to 99 Mo/ 99 mTc, 64,67 Cu and 103 Pd. In: International Atomic Energy Agency (IAEA). Utilization related design features of research reactors: a compendium. 2007; pp. 135–143.
IAEA. Research reactors: purpose and future. International Atomic Energy Agency; 2016. pp. 1–16.
KURNS. Kyoto University Research Reactor. Institute for Integrated Radiation and Nuclear Science, Kyoto University; 2020.
ANSTO. OPAL Multi-purpose reactor. Australia’s Nuclear Science and Technology Organisation; 2020.
IAEA. Jordan’s new research reactor: a virtual tour. International Atomic Energy Agency; 2020.
WNA. Research reactors. World Nuclear Association; 2020.
IAEA. Research reactor database. International Atomic Energy Agency; 2021.
IAEA. Manual for reactor produced radioisotopes. International Atomic Energy Agency; 2003.
Mushtaq A. Producing radioisotopes in power reactors. J Radioanal Nucl Chem 2011; 292:793–802.
Krijger GC, Ponsard B, Harfensteller M, Wolterbeek HT, Nijsen JW. The necessity of nuclear reactors for targeted radionuclide therapies. Trends Biotechnol 2013; 31:390–396.
IAEA. Diagnostic radiopharmaceuticals. International Atomic Energy Agency; 2019.
Qaim SM. Therapeutic radionuclides and nuclear data. Radiochim Acta 2001; 89:297–304.
Clunie G, Fischer M. EANM procedure guidelines for radiosynovectomy. Eur J Nucl Med Mol Imaging 2003; 30:BP12–BP16.
Liberal FDG, Tavares AAS, Tavares JMR. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 2016; 110:87–99.
Metastron™. Strontium [ 89 Sr] Chloride injection. General Electric Company; 2016. pp. 1–2.
Jadvar H. Targeted radionuclide therapy: An evolution toward precision cancer treatment. Am J Roentgenol 2017; 209:277–288.
Pillai M. Radionuclides for targeted therapy. Academia; 2007. pp. 50–86.
Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev 1999; 99:2269–2292.
Baum RP. Therapeutic nuclear medicine. Springer; 2014.
Volterrani D, Erba PA, Carrió I, Strauss HW, Mariani G. Nuclear medicine textbook: Methodology and clinical applications. Springer International Publishing; 2019.
Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med 2005; 46:38S–47S.
Hochstetler JA, Kreder KJ, Loening SA, Brown CK. Survival of patients with localized prostate cancer treated with percutaneous transperineal placement of radioactive gold seeds: stages A2, B, and C. Prostate 1995; 26:316–324.
Topp J, Cross G. The treatment of persistent knee effusions with intra-articular radioactive gold: preliminary report. Can Med Assoc J 1970; 102:709–714.
Kraft O, Kasparek R. Radiosynoviorthesis of small and medium joints with Rhenium-186 sulfide and Erbium-169 citrate. World J Nucl Med 2008; 7:7.
Agarwal KK, Singla S, Arora G, Bal C. 177 Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging 2015; 42:79–88.
Chakraborty S, Vimalnath K, Rajeswari A, Chakravarty R, Sarma H, Radhakrishnan E, et al. A ‘mix-and-use’ approach for formulation of human clinical doses of 177 Lu-DOTMP at hospital radiopharmacy for management of pain arising from skeletal metastases. J Labelled Comp Radiopharm 2017; 60:410–419.
Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177 Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med 2017; 376:125–135.
Lutathera. Lutathera® (Lutetium, Lu-177 dotatate) injection, for intravenous use. Advanced Accelerator Applications USA, Inc.; 2018.
Bayouth JE, Macey DJ, Kasi LP, Garlich JR, McMillan K, Dimopoulos MA, et al. Pharmacokinetics, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med 1995; 36:730–737.
Reinders MT, Smits ML, van Roekel C, Braat AJ. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med 2019; 49:1–7.
Song J, Suh CH, Park YB, Lee SH, Yoo NC, Lee JD, et al. A phase I/IIa study on intra-articular injection of Holmium-166-chitosan complex for the treatment of knee synovitis of rheumatoid arthritis. Eur J Nucl Med 2001; 28:489–497.
Kim JH, Lee JT, Kim EK, Won JY, Kim M-J, Lee JD, et al. Percutaneous sclerotherapy of renal cysts with a beta-emitting radionuclide, Holmium-166-chitosan complex. Korean J Radiol 2004; 5:128–133.
Sohn JH, Choi HJ, Lee JT, Lee JD, Kim JH, Moon YM, et al. Phase II study of transarterial Holmium-166-chitosan complex treatment in patients with a single, large hepatocellular carcinoma. Oncology (Huntingt) 2009; 76:1–9.
Cho Y, Kim K, Chun Y, Rhyu K, Kwon B, Kim D, et al. Radioisotope synoviorthesis with Holmium-166-chitosan complex in haemophilic arthropathy. Haemophilia 2010; 16:640–646.
Ofluoglu S, Schwameis E, Zehetgruber H, Havlik E, Wanivenhaus A, Schweeger I, et al. Radiation synovectomy with 166 Ho-ferric hydroxide: a first experience. J Nucl Med 2002; 43:1489–1494.
Vuorela J, Kauppinen T, Sokka T. Distribution of radiation in synovectomy of the knee with 166 Ho-FHMA using image fusion. Cancer Biother Radiopharm 2005; 20:333–337.
Kraft O, Kašpárek R, Ullmann V, Melichar F, Kropáček M, Mirzajevova M. Radiosynoviorthesis of knees by means of 166 Ho-holmium-boro-macroaggregates. Cancer Biother Radiopharm 2007; 22:296–302.
Jubilant P. Material Safety Data Sheet – DRAXIMAGE® Sodium Iodide, I-131 solution, USP, therapeutic and diagnostic. Jubilant DraxImage Inc.; 2011. pp. 1–7.
Jubilant P. HICON™ Kit for the preparation of sodium iodide, I-131 capsules and solution USP therapeutic – oral. Jubilant DraxImage Inc.; 2011. pp. 1–14.
GE H. Package leaflet: information for the healthcare professional. GE Healthcare; 2017. pp. 1–14.
Eisenhut M, Berberich R, Kimmig B, Oberhausen E. Iodine-131-labeled diphosphonates for palliative treatment of bone metastases: II. Preliminary clinical results with Iodine-131 BDP3. J Nucl Med 1986; 27:1255–1261.
Kayano D, Kinuya S. Current consensus on I-131 MIBG therapy. J Nucl Med Mol Imaging 2018; 52:254–265.
Lau WY, Leung T, Ho S, Chan M, Machin D, Lau J, et al. Adjuvant intra-arterial lipiodol-iodine-131 for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 1999; 353:797–801.
Partensky C, Sassolas G, Henry L, Paliard P, Maddern GJ. Intra-arterial iodine 131–labeled lipiodol as adjuvant therapy after curative liver resection for hepatocellular carcinoma: a phase 2 clinical study. Arch Surg 2000; 135:1298–1300.
Lau WY, Lai EC, Leung TW, Simon C. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial - update on 5-year and 10-year survival. Ann Surg 2008; 247:43–48.
Fisher DR. Medical isotope production and use. Office of National Isotope Programs; 2009. pp. 1–56.
Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S, et al. Radiosynovectomy using Yttrium-90, Phosphorus-32 or Rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med 2011; 25:317–323.
Yan L, Li Z, Li L, Wang L, Lu W, Xie X, et al. The relationship between effects and radiation doses of intra-arterial Phosphorus-32 glass microspheres embolization therapy for patients with advanced liver cancer. Zhonghua Wai Ke Za Zhi [Chinese J Surg] 2000; 38:837–840.
Pirayesh E, Amoui M, Akhlaghpoor S, Tolooee S, Khorrami M, PoorBeigi H, et al. Technical considerations of Phosphorous-32 bremsstrahlung SPECT imaging after radioembolization of hepatic tumors: a clinical assessment with a review of imaging parameters. Radiol Res Pract 2014; 2014:1–7.
Calegaro JUM, de Podestá Haje D, Machado J, Sayago M, de Landa DC. Synovectomy using Samarium-153 hydroxyapatite in the elbows and ankles of patients with hemophilic arthropathy. World J Nucl Med 2018; 17:6–11.
Silberstein EB. Systemic radiopharmaceutical therapy of painful osteoblastic metastases. Semin Radiat Oncol 2000; 10:240–249.
Shamim SA, Kumar R, Halanaik D, Kumar A, Shandal V, Shukla J, et al. Role of Rhenium-188 tin colloid radiosynovectomy in patients with inflammatory knee joint conditions refractoy to conventional therapy. Nucl Med Commun 2010; 31:814–820.
Shukla J, Bandopadhyaya G, Shamim S, Kumar R. Characterization of Re-188–Sn microparticles used for synovitis treatment. Int J Pharm 2007; 338:43–47.
Atkins HL, Mausner LF, Srivastava SC, Meinken GE, Cabahug CJ, D’Alessandro T. Tin-117m (4+)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med 1995; 36:725–729.
Srivastava S, Atkins H, Krishnamurthy G, Zanzi I, Silberstein E, Meinken G, et al. Treatment of metastatic bone pain with Tin-117m stannic diethylenetriaminepentaacetic acid: a phase I/II clinical study. Clin Cancer Res 1998; 4:61–68.
Cohen P. Sn-117m Canadian human clinical trial: pilot study of 117m Sn hydroxide colloid for radiosynoviorthesis in refractory arthritis of the knee. 2019.
Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90 Y-DOTATATE and tandem 90 Y/ 177 Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 2011; 38:1788–1797.
Menda Y, Madsen MT, O’Dorisio TM, Sunderland JJ, Watkins GL, Dillon JS, et al. 90 Y-DOTATOC Dosimetry–based personalized peptide receptor radionuclide therapy. J Nucl Med 2018; 59:1692–1698.
Thomas S, Gabriel M, De Souza S, Gomes S, Assi P, Pinheiro Perri M, et al. 90 Yttrium-hydroxyapatite: a new therapeutic option for radioactive synovectomy in haemophilic synovitis. Haemophilia 2011; 17:e985–e9e9.
Rösch F, Herzog H, Plag C, Neumaier B, Braun U, Müller-Gärtnere HW, et al. Radiation doses of Yttrium-90 citrate and Yttrium-90 EDTMP as determined via analogous Yttrium-86 complexes and positron emission tomography. Eur J Nucl Med 1996; 23:958–966.
Khajornjiraphan N, Thu NA, Chow PKH. Yttrium-90 microspheres: a review of its emerging clinical indications. Liver Cancer 2015; 4:6–15.
TheraSphere. Package insert: TheraSphere® Yttrium-90 glass microspheres. BTG International Ltd.; 2015.
SIRTeX. SIR-spheres® Y-90 resin microspheres (Yttrium-90 microspheres). Sirtex Medical Limited; 2017. pp. 1–3.
Volkert W, Goeckeler W, Ehrhardt G, Ketring A. Therapeutic radionuclides: Production and decay property considerations. J Nucl Med 1991; 32:174–185.
van der Keur H. Medical radioisotopes production without a nuclear reactor. Nuclear Monitor; 2010. pp. 1–39.
IAEA. Cyclotron produced radionuclides: principles and practice. International Atomic Energy Agency; 2008.
IAEA. Cyclotron produced radionuclides: physical characteristics and production methods. International Atomic Energy Agency; 2009.
Iturralde MP. Dictionary and handbook of nuclear medicine and clinical imaging. Taylor & Francis; 2018.
Faus-Golfe Á, Edgecock R. Applications of particle accelerators in Europe. European Coordinated Accelerator Research and Development; 2017. pp. 1–116.
Oliver C. Compact and efficient accelerators for radioisotope production. 2017. pp. 4824–4829.
Starovoitova VN, Tchelidze L, Wells DP. Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 2014; 85:39–44.
Ziessman HA, O’Malley JP, Thrall JH. Nuclear medicine: the requisites. Elsevier Health Sciences; 2013.
Knapp F Jr, Callahan A, Mirzadeh S, Brihaye C, Guillaume M. The development of new radionuclide generator systems for nuclear medicine applications. Oak Ridge National Laboratory; 1991. pp. 1–30.
Cherry SR, Sorenson JA, Phelps ME. Radionuclide and radiopharmaceutical production. Phys Nucl Med 2012:43–61.
Pillai M, Dash A, Knapp FR Jr. Radionuclide generators: a ready source diagnostic and therapeutic radionuclides for nuclear medicine applications. In: Santos-Oliveira R, editor. In: Radiopharmaceuticals: application, insights and future. Lambert Academic Publishing; 2016. pp. 63–118.
Dash A, Chakravarty R. Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am J Nucl Med Mol Imaging 2019; 9:30–66.
المشرفين على المادة: 0 (Radiopharmaceuticals)
0 (Radioisotopes)
تواريخ الأحداث: Date Created: 20230222 Date Completed: 20230309 Latest Revision: 20230415
رمز التحديث: 20240628
DOI: 10.1097/MNM.0000000000001665
PMID: 36808108
قاعدة البيانات: MEDLINE
الوصف
تدمد:1473-5628
DOI:10.1097/MNM.0000000000001665