دورية أكاديمية

Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles.

التفاصيل البيبلوغرافية
العنوان: Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles.
المؤلفون: Gios E; School of Biological Sciences, The University of Auckland, Auckland, New Zealand.; NINA, Norwegian Institute for Nature Research, Trondheim, Norway., Mosley OE; School of Biological Sciences, The University of Auckland, Auckland, New Zealand.; NatureMetrics Ltd, Surrey Research Park, Guildford, UK., Weaver L; Institute of Environmental Science and Research, Christchurch, New Zealand., Close M; Institute of Environmental Science and Research, Christchurch, New Zealand., Daughney C; GNS Science, Lower Hutt, New Zealand.; NIWA, National Institute of Water and Atmospheric Research, Wellington, New Zealand., Handley KM; School of Biological Sciences, The University of Auckland, Auckland, New Zealand. kim.handley@auckland.ac.nz.
المصدر: ISME communications [ISME Commun] 2023 Feb 17; Vol. 3 (1), pp. 13. Date of Electronic Publication: 2023 Feb 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 9918205372406676 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-6151 (Electronic) Linking ISSN: 27306151 NLM ISO Abbreviation: ISME Commun Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 3 2024- : Oxford : Oxford University Press
Original Publication: [London] : Springer Nature on behalf of the International Society for Microbial Ecology, [2021]-
مستخلص: Aquifers are populated by highly diverse microbial communities, including unusually small bacteria and archaea. The recently described Patescibacteria (or Candidate Phyla Radiation) and DPANN radiation are characterized by ultra-small cell and genomes sizes, resulting in limited metabolic capacities and probable dependency on other organisms to survive. We applied a multi-omics approach to characterize the ultra-small microbial communities over a wide range of aquifer groundwater chemistries. Results expand the known global range of these unusual organisms, demonstrate the wide geographical range of over 11,000 subsurface-adapted Patescibacteria, Dependentiae and DPANN archaea, and indicate that prokaryotes with ultra-small genomes and minimalistic metabolism are a characteristic feature of the terrestrial subsurface. Community composition and metabolic activities were largely shaped by water oxygen content, while highly site-specific relative abundance profiles were driven by a combination of groundwater physicochemistries (pH, nitrate-N, dissolved organic carbon). We provide insights into the activity of ultra-small prokaryotes with evidence that they are major contributors to groundwater community transcriptional activity. Ultra-small prokaryotes exhibited genetic flexibility with respect to groundwater oxygen content, and transcriptionally distinct responses, including proportionally greater transcription invested into amino acid and lipid metabolism and signal transduction in oxic groundwater, along with differences in taxa transcriptionally active. Those associated with sediments differed from planktonic counterparts in species composition and transcriptional activity, and exhibited metabolic adaptations reflecting a surface-associated lifestyle. Finally, results showed that groups of phylogenetically diverse ultra-small organisms co-occurred strongly across sites, indicating shared preferences for groundwater conditions.
(© 2023. The Author(s).)
References: Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11. (PMID: 10.1038/ncomms13219)
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115:6506–11. (PMID: 29784790601676810.1073/pnas.1711842115)
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:1–6. (PMID: 10.1038/nmicrobiol.2016.48)
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7. (PMID: 2385139410.1038/nature12352)
Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25:690–701. (PMID: 2570257610.1016/j.cub.2015.01.014)
Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–11. (PMID: 2608375510.1038/nature14486)
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996. (PMID: 3014850310.1038/nbt.4229)
Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173. (PMID: 31519891674444210.1038/s41467-019-12171-z)
Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45. (PMID: 3018166310.1038/s41579-018-0076-2)
He C, Keren R, Whittaker M, Farag IF, Doudna J, Cate JHD, et al. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat Microbiol. 2021;6:354–65. (PMID: 33495623790691010.1038/s41564-020-00840-5)
Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young J. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone national park hot springs. Appl Environ Microbiol. 2015;81:7860–8. (PMID: 26341207461695010.1128/AEM.01539-15)
Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL, et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun. 2016;7:12115. (PMID: 27378076493597110.1038/ncomms12115)
Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun. 2018;9:2876. (PMID: 30038374605649310.1038/s41467-018-05020-y)
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–17. (PMID: 20656903294449810.1128/JB.00542-10)
He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci USA. 2015;112:244–9. (PMID: 2553539010.1073/pnas.1419038112)
McLean JS, Bor B, Kerns KA, Liu Q, To TT, Solden L, et al. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep. 2020;32:107939. (PMID: 32698001742784310.1016/j.celrep.2020.107939)
Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:1–17. (PMID: 10.1093/femsec/fiw018)
Danczak RE, Johnston MD, Kenah C, Slattery M, Wrighton KC, Wilkins MJ. Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities. Microbiome. 2017;5:112. (PMID: 28865481558143910.1186/s40168-017-0331-1)
Luef B, Frischkorn KR, Wrighton KC, Holman H-YN, Birarda G, Thomas BC, et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun. 2015;6:6372. (PMID: 2572168210.1038/ncomms7372)
Proctor CR, Besmer MD, Langenegger T, Beck K, Walser JC, Ackermann M, et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 2018;12:1344–59. (PMID: 29416124593201710.1038/s41396-018-0070-8)
Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 2015;9:1846–56. (PMID: 25647349451194110.1038/ismej.2015.2)
Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;5:328–36. (PMID: 10.1038/s41564-017-0098-y)
Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell. 2018;172:1181–97. (PMID: 2952274110.1016/j.cell.2018.02.016)
Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 2014;8:1452–63. (PMID: 24621521406939110.1038/ismej.2013.249)
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 2002;417:63–7. (PMID: 1198666510.1038/417063a)
Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703. (PMID: 2572736710.1111/1462-2920.12817)
Lopez-Fernandes M, Simone D, Wu X, Soler L, Nilsson E, Holmfeldt K, et al. Metatranscriptomes reveal that all three domains of life are active but are dominated by bacteria in the Fennoscandian crystalline granitic continental deep biosphere. mBio. 2018;9:e0179218. (PMID: 10.1128/mBio.01792-18)
Nicolas AM, Jaffe AL, Nuccio EE, Taga ME, Firestone MK, Banfield JF. Soil Candidate Phyla Radiation bacteria encode components of aerobic metabolism and co-occur with Nanoarchaea in the rare biosphere of rhizosphere grassland communities. mSystems. 2021;6:e0120520. (PMID: 3440264610.1128/mSystems.01205-20)
Castelle CJ, Brown CT, Thomas BC, Williams KH, Banfield JF. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation. Sci Rep. 2017;7:1–12. (PMID: 10.1038/srep40101)
Mosley OE, Gios E, Weaver L, Close M, Daughney C, van der Raaij R, et al. Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers. mSystems. 2022;7:e01255–21. (PMID: 35191775886266210.1128/msystems.01255-21)
Mosley OE, Gios E, Close M, Weaver L, Daughney C, Handley KM. Nitrogen cycling and microbial cooperation in the terrestrial subsurface. ISME J. 2022;16:2561–73. (PMID: 35941171956298510.1038/s41396-022-01300-0)
Close M, Abraham P, Webber J, Cowey E, Humphries B, Fenwick G, et al. Use of sonication for enhanced sampling of attached microbes from groundwater systems. Groundwater. 2020;58:901–15. (PMID: 10.1111/gwat.12984)
Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol. 2014;80:5116LP–5123. (PMID: 10.1128/AEM.01403-14)
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15. (PMID: 278225185069754)
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8. (PMID: 28742071570273210.1038/ismej.2017.126)
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. (PMID: 25977477448438710.1101/gr.186072.114)
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. (PMID: 19261174269099610.1186/gb-2009-10-3-r25)
Tee HS, Waite D, Payne L, Middleditch M, Wood S, Handley KM. Tools for successful proliferation: diverse strategies of nutrient acquisition by a benthic cyanobacterium. ISME J. 2020;14:2164–78. (PMID: 32424245736785510.1038/s41396-020-0676-5)
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. (PMID: 20211023284864810.1186/1471-2105-11-119)
Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci USA. 2013;110:5540–5. (PMID: 23509275361937010.1073/pnas.1303090110)
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. (PMID: 2070969110.1093/bioinformatics/btq461)
Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, Consortium U. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–32. (PMID: 2539860910.1093/bioinformatics/btu739)
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. (PMID: 10.1093/nar/gkw1099)
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. (PMID: 2647645410.1093/nar/gkv1070)
Sonnhammer ELL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;26:320–2. (PMID: 939986414720910.1093/nar/26.1.320)
Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3. (PMID: 1252002516557510.1093/nar/gkg128)
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22. (PMID: 28460117585083410.1093/molbev/msx148)
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14. (PMID: 3041861010.1093/nar/gky1085)
Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018;12:1861–6. (PMID: 29523891601867710.1038/s41396-018-0091-3)
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3. (PMID: 3077823310.1038/s41587-019-0036-z)
Deeg CM, Zimmer MM, George EE, Husnik F, Keeling PJ, Suttle CA. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum dependentiae. PLoS Pathog. 2019;15:1–18. (PMID: 10.1371/journal.ppat.1007801)
Tang Y, Horikoshi M, Li W. ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8:478–89.
Martin C. ggConvexHull: Add a convex hull geom to ggplot2. R package version 0.1.0. 2017. https://github.com/cmartin/ggConvexHull .
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. (PMID: 2537143010.1093/molbev/msu300)
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. (PMID: 28481363545324510.1038/nmeth.4285)
Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8. (PMID: 1705057010.1093/bioinformatics/btl529)
Hamilton NE, Ferry M. ggtern: ternary diagrams using ggplot2. J Stat Softw. 2018;87:1–17. (PMID: 10.18637/jss.v087.c03)
Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package software. 2016. https://github.com/vegandevs/vegan .
Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1–9.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. (PMID: 1991030810.1093/bioinformatics/btp616)
Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25. (PMID: 28777382564917110.1038/ismej.2017.122)
Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883. (PMID: 2879810110.1126/science.aaf3883)
Bird JT, Baker BJ, Probst AJ, Podar M, Lloyd KG. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front Microbiol. 2016;7:1221. (PMID: 27547202497500210.3389/fmicb.2016.01221)
Castelle CJ, Méheust R, Jaffe AL, Seitz K, Gong X, Baker BJ, et al. Protein family content uncovers lineage relationships and bacterial pathway maintenance mechanisms in DPANN archaea. Front Microbiol. 2021;12:1233. (PMID: 10.3389/fmicb.2021.660052)
Wegner C-E, Gaspar M, Geesink P, Herrmann M, Küsel K, Marz M. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of elements of nitrogen, sulfur and carbon. Appl Environ Microbiol. 2019;85:1–18.
Herrmann M, Wegner C-E, Taubert M, Geesink P, Lehmann K, Yan L, et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front Microbiol. 2019;10:1–15. (PMID: 10.3389/fmicb.2019.01407)
Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5. (PMID: 2301965010.1126/science.1224041)
Peura S, Eiler A, Bertilsson S, Nykänen H, Tiirola M, Jones RI. Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. ISME J. 2012;6:1640–52. (PMID: 22418623349892410.1038/ismej.2012.21)
Hubalek V, Wu X, Eiler A, Buck M, Heim C, Dopson M, et al. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 2016;10:2447–58. (PMID: 27022994503068910.1038/ismej.2016.36)
León-Zayas R, Peoples L, Biddle JF, Podell S, Novotny M, Cameron J, et al. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 2017;19:2769–84. (PMID: 28474498552454210.1111/1462-2920.13789)
Malard F, Hervant F. Oxygen supply and the adaptations of animals in groundwater. Freshw Biol. 1999;41:1–30. (PMID: 10.1046/j.1365-2427.1999.00379.x)
Ortiz-Alvarez R, Casamayor EO. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 2016;8:210–7. (PMID: 2671158210.1111/1758-2229.12370)
Nelson WC, Stegen JC. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol. 2015;6:1–14. (PMID: 10.3389/fmicb.2015.00713)
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–94. (PMID: 3452055710.1093/nar/gkab776)
Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, et al. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio. 2013;4:e0070813. (PMID: 10.1128/mBio.00708-13)
Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406. (PMID: 28731467564916910.1038/ismej.2017.113)
Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459:333–44. (PMID: 2450266710.1042/BJ20140073)
Sakai HD, Naswandi N, Shingo K, Masahiro Y, Michiru S, Takashi I, et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc Natl Acad Sci USA. 2022;119:e2115449119. (PMID: 35022241878410810.1073/pnas.2115449119)
Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome. 2018;6:122. (PMID: 29970182603111610.1186/s40168-018-0499-z)
Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77. (PMID: 10.1111/j.1365-2427.2008.02013.x)
Flynn TM, Sanford RA, Bethke CM. Attached and suspended microbial communities in a pristine confined aquifer. Water Resour Res. 2008;44:1–7. (PMID: 10.1029/2007WR006633)
Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65. (PMID: 24739623481761410.1038/ismej.2014.60)
Kirchberger PC, Schmidt ML, Ochman H. The ingenuity of bacterial genomes. Annu Rev Microbiol. 2020;74:815–34. (PMID: 3269261410.1146/annurev-micro-020518-115822)
Kuo SC, Koshland DE. Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli. J Bacteriol. 1987;169:1307–14. (PMID: 354626921193510.1128/jb.169.3.1307-1314.1987)
Whiteley CG, Lee D-J. Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv. 2015;33:124–41. (PMID: 2549969310.1016/j.biotechadv.2014.11.010)
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a novel role of Yebc in surface polysaccharides regulation of Escherichia coli bipA-deletion. Front Microbiol. 2020;11:597515. (PMID: 33240252768219010.3389/fmicb.2020.597515)
Maigaard Hermansen GM, Boysen A, Krogh TJ, Nawrocki A, Jelsbak L, Møller-Jensen J. HldE is important for virulence phenotypes in enterotoxigenic Escherichia coli. Front Cell Infect Microbiol. 2018;8:253. (PMID: 30131942609025910.3389/fcimb.2018.00253)
McAuliffe L, Ayling RD, Ellis RJ, Nicholas RAJ. Biofilm-grown Mycoplasma mycoides subsp. mycoides SC exhibit both phenotypic and genotypic variation compared with planktonic cells. Vet Microbiol. 2008;129:315–24. (PMID: 1819192110.1016/j.vetmic.2007.11.024)
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep. 2021;11:5650. (PMID: 33707544795291810.1038/s41598-021-84326-2)
Beam JP, Becraft ED, Brown JM, Schulz F, Jarett JK, Bezuidt O, et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front Microbiol. 2020;11:1848. (PMID: 33013724750711310.3389/fmicb.2020.01848)
Probst AJ, Elling FJ, Castelle CJ, Zhu Q, Elvert M, Birarda G, et al. Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME J. 2020;14:1547–60. (PMID: 32203118724238010.1038/s41396-020-0624-4)
Schwank K, Bornemann TLV, Dombrowski N, Spang A, Banfield JF, Probst AJ. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 2019;13:2135–9. (PMID: 31048756677605910.1038/s41396-019-0421-0)
Gios E, Mosley OE, Takeuchi N, Handley KM. Genetic exchange shapes ultra-small Patescibacteria metabolic capacities in the terrestrial subsurface. bioRxiv. 2022. https://doi.org/10.1101/2022.10.05.510940 .
Wang L, Archer GL. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J Bacteriol. 2010;192:3204–12. (PMID: 20382769290170010.1128/JB.01520-09)
Paul BG, Burstein D, Castelle CJ, Handa S, Arambula D, Czornyj E, et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat Microbiol. 2017;2:1–8. (PMID: 10.1038/nmicrobiol.2017.45)
Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63. (PMID: 27819664553856710.1038/nbt.3704)
Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci. 2009;66:613–35. (PMID: 1895368610.1007/s00018-008-8477-4)
Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, et al. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J. 2013;7:338–50. (PMID: 2303817210.1038/ismej.2012.103)
Leenheer JA, Malcolm RL, Mckinley PW. Occurrence of dissolved organic carbon in selected groudwater samples in the United States. J Res US Geol Surv. 1974;2:259–85.
Geesink P, Wegner CE, Probst AJ, Herrmann M, Dam HT, Kaster AK, et al. Genome-inferred spatio-temporal resolution of an uncultivated Roizmanbacterium reveals its ecological preferences in groundwater. Environ Microbiol. 2020;22:726–37. (PMID: 3174286510.1111/1462-2920.14865)
معلومات مُعتمدة: UOAX1720 Ministry of Business, Innovation and Employment (MBIE); UOAX1720 Ministry of Business, Innovation and Employment (MBIE); UOAX1720 Ministry of Business, Innovation and Employment (MBIE); UOAX1720 Ministry of Business, Innovation and Employment (MBIE); UOAX1720 Ministry of Business, Innovation and Employment (MBIE); UOAX1720 Ministry of Business, Innovation and Employment (MBIE)
تواريخ الأحداث: Date Created: 20230222 Latest Revision: 20231108
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9938205
DOI: 10.1038/s43705-023-00223-x
PMID: 36808147
قاعدة البيانات: MEDLINE
الوصف
تدمد:2730-6151
DOI:10.1038/s43705-023-00223-x