دورية أكاديمية

Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study.

التفاصيل البيبلوغرافية
العنوان: Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study.
المؤلفون: de Klerk JA; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands., Beulens JWJ; Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.; Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands., Mei H; Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands., Bijkerk R; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands., van Zonneveld AJ; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands., Koivula RW; Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, CRC, Skåne University Hospital Malmö, Malmö, Sweden., Elders PJM; Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.; Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands., 't Hart LM; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.; Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.; Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.; Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands., Slieker RC; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. r.c.slieker@lumc.nl.; Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands. r.c.slieker@lumc.nl.; Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands. r.c.slieker@lumc.nl.
المصدر: Diabetologia [Diabetologia] 2023 Jun; Vol. 66 (6), pp. 1057-1070. Date of Electronic Publication: 2023 Feb 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin Springer Verlag
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/genetics , RNA, Long Noncoding*/genetics , RNA, Long Noncoding*/metabolism , Insulins*, Humans ; Lipid Metabolism/genetics ; Genome-Wide Association Study ; Cholesterol, HDL ; Gene Expression ; Obesity/complications ; Obesity/genetics ; Receptors, Peptide/genetics ; Receptors, Peptide/metabolism ; Receptors, G-Protein-Coupled/metabolism
مستخلص: Aims/hypothesis: The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes.
Methods: Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA 1c , C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data.
Results: Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10 -15 ), without evidence for reverse causality.
Conclusions/interpretation: Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
(© 2023. The Author(s).)
References: Ahlqvist E, Storm P, Karajamaki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2. (PMID: 10.1016/S2213-8587(18)30051-229503172)
Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study. Diabetologia 64(9):1982–1989. https://doi.org/10.1007/s00125-021-05490-8. (PMID: 10.1007/s00125-021-05490-8341104398382625)
Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Distinct molecular signatures of clinical clusters in people with type 2 diabetes: an IMI-RHAPSODY study. Diabetes 70(11):2683–2693. https://doi.org/10.2337/db20-1281. (PMID: 10.2337/db20-1281343764758564413)
Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16(3):20190027. https://doi.org/10.1515/jib-2019-0027. (PMID: 10.1515/jib-2019-0027313016746798851)
Zhang X, Wang W, Zhu W et al (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 20(22):5573. https://doi.org/10.3390/ijms20225573. (PMID: 10.3390/ijms20225573317172666888083)
Leung A, Natarajan R (2018) Long noncoding RNAs in diabetes and diabetic complications. Antioxid Redox Signal 29(11):1064–1073. https://doi.org/10.1089/ars.2017.7315. (PMID: 10.1089/ars.2017.7315289348616121179)
Hu M, Ma Q, Liu B et al (2022) Long non-coding RNAs in the pathogenesis of diabetic kidney disease. Front Cell Dev Biol 10:845371. https://doi.org/10.3389/fcell.2022.845371. (PMID: 10.3389/fcell.2022.845371355175099065414)
Tanwar VS, Reddy MA, Natarajan R (2021) Emerging role of long non-coding RNAs in diabetic vascular complications. Front Endocrinol (Lausanne) 12:665811. https://doi.org/10.3389/fendo.2021.665811. (PMID: 10.3389/fendo.2021.66581134234740)
van der Heijden AA, Rauh SP, Dekker JM et al (2017) The Hoorn Diabetes Care System (DCS) cohort. A prospective cohort of persons with type 2 diabetes treated in primary care in the Netherlands. BMJ Open 7(5):e015599. https://doi.org/10.1136/bmjopen-2016-015599. (PMID: 10.1136/bmjopen-2016-015599285881125729999)
Slieker RC, van der Heijden A, van Leeuwen N et al (2018) HbA 1c is associated with altered expression in blood of cell cycle- and immune response-related genes. Diabetologia 61(1):138–146. https://doi.org/10.1007/s00125-017-4467-0. (PMID: 10.1007/s00125-017-4467-029159468)
Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635. (PMID: 10.1093/bioinformatics/bts63523104886)
HTSeq. Available from https://htseq.readthedocs.io/en/master/ . Accessed 31 January 2023.
GENCODE. Available from https://www.gencodegenes.org/ . Accessed 31 January 2023.
Võsa U, Claringbould A, Westra HJ et al (2021) Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet 53(9):1300–1310. https://doi.org/10.1038/s41588-021-00913-z.
IEU OpenGWAS. Available from https://gwas.mrcieu.ac.uk/ . Accessed 20 April 2022.
Brion MJ, Shakhbazov K, Visscher PM (2013) Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 42(5):1497–1501. https://doi.org/10.1093/ije/dyt179. (PMID: 10.1093/ije/dyt17924159078)
Zhang X, Veturi Y, Verma S et al (2019) Detecting potential pleiotropy across cardiovascular and neurological diseases using univariate, bivariate, and multivariate methods on 43,870 individuals from the eMERGE network. Pac Symp Biocomput 24:272–283. (PMID: 308643296457436)
Bone WP, Siewert KM, Jha A et al (2021) Multi-trait association studies discover pleiotropic loci between Alzheimer's disease and cardiometabolic traits. Alzheimers Res Ther 13(1):34. https://doi.org/10.1186/s13195-021-00773-z. (PMID: 10.1186/s13195-021-00773-z335414207860582)
Koivula RW, Forgie IM, Kurbasic A et al (2019) Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia 62(9):1601–1615. https://doi.org/10.1007/s00125-019-4906-1. (PMID: 10.1007/s00125-019-4906-1312033776677872)
Koivula RW, Heggie A, Barnett A et al (2014) Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia 57(6):1132–1142. https://doi.org/10.1007/s00125-014-3216-x. (PMID: 10.1007/s00125-014-3216-x246958644018481)
Valiathan R, Ashman M, Asthana D (2016) Effects of ageing on the immune system: infants to elderly. Scand J Immunol 83(4):255–266. https://doi.org/10.1111/sji.12413. (PMID: 10.1111/sji.1241326808160)
Aminzadeh Z, Parsa E (2011) Relationship between age and peripheral white blood cell count in patients with sepsis. Int J Prev Med 2(4):238–242. (PMID: 221749633237266)
Johannsen NM, Priest EL, Dixit VD, Earnest CP, Blair SN, Church TS (2010) Association of white blood cell subfraction concentration with fitness and fatness. Br J Sports Med 44(8):588–593. https://doi.org/10.1136/bjsm.2008.050682. (PMID: 10.1136/bjsm.2008.05068218927160)
Furuncuoglu Y, Tulgar S, Dogan AN, Cakar S, Tulgar YK, Cakiroglu B (2016) How obesity affects the neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet indices: a retrospective study. Eur Rev Med Pharmacol Sci 20(7):1300–1306. (PMID: 27097950)
Bauer M, Fink B, Seyfarth HJ, Wirtz H, Frille A (2017) Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage. BMC Pulm Med 17(1):159. https://doi.org/10.1186/s12890-017-0509-0. (PMID: 10.1186/s12890-017-0509-0291832995706341)
Koks G, Uudelepp ML, Limbach M, Peterson P, Reimann E, Koks S (2015) Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am J Pathol 185(11):2898–2906. https://doi.org/10.1016/j.ajpath.2015.07.006. (PMID: 10.1016/j.ajpath.2015.07.00626348578)
Koks S, Koks G (2017) Activation of GPR15 and its involvement in the biological effects of smoking. Exp Biol Med (Maywood) 242(11):1207–1212. https://doi.org/10.1177/1535370217703977. (PMID: 10.1177/153537021770397728423922)
Huan T, Liu C, Joehanes R et al (2015) A systematic heritability analysis of the human whole blood transcriptome. Hum Genet 134(3):343–358. https://doi.org/10.1007/s00439-014-1524-3. (PMID: 10.1007/s00439-014-1524-3255858464339826)
Pereira SS, Alvarez-Leite JI (2014) Low-grade inflammation, obesity, and diabetes. Curr Obes Rep 3(4):422–431. https://doi.org/10.1007/s13679-014-0124-9. (PMID: 10.1007/s13679-014-0124-926626919)
Abdelaal M, le Roux CW, Docherty NG (2017) Morbidity and mortality associated with obesity. Ann Transl Med 5(7):161. https://doi.org/10.21037/atm.2017.03.107. (PMID: 10.21037/atm.2017.03.107284801975401682)
Lopez-Urrutia E, Bustamante Montes LP, Ladron de Guevara Cervantes D, Perez-Plasencia C, Campos-Parra AD (2019) Crosstalk between long non-coding RNAs, Micro-RNAs and mRNAs: deciphering molecular mechanisms of master regulators in cancer. Front Oncol 9:669. https://doi.org/10.3389/fonc.2019.00669. (PMID: 10.3389/fonc.2019.00669314042736670781)
Zha K, Ye Q (2021) A novel mutation in the KCNH2 gene associated with long QT syndrome: A case report. Ann Clin Lab Sci 51(2):258–261. (PMID: 33941567)
Ono M, Burgess DE, Schroder EA et al (2020) Long QT syndrome type 2: emerging strategies for correcting class 2 KCNH2 (hERG) mutations and identifying new patients. Biomolecules 10(8):1144. https://doi.org/10.3390/biom10081144s. (PMID: 10.3390/biom10081144s327598827464307)
Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL (2011) Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 6(1):e16423. https://doi.org/10.1371/journal.pone.0016423. (PMID: 10.1371/journal.pone.0016423212836583025034)
Gasecka A, Rogula S, Szarpak L, Filipiak KJ (2021) LDL-cholesterol and platelets: insights into their interactions in atherosclerosis. Life (Basel) 11(1):39. https://doi.org/10.3390/life11010039. (PMID: 10.3390/life1101003933440673)
Jiménez-González V, Ogalla-Garcia E, Garcia-Quintanilla M, Garcia-Quintanilla A (2019) Deciphering GRINA/Lifeguard1: nuclear location, Ca 2+ homeostasis and vesicle transport. Int J Mol Sci 20(16):4005. https://doi.org/10.3390/ijms20164005.
Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657):540–543. https://doi.org/10.1126/science.1091403. (PMID: 10.1126/science.1091403147044311698949)
Simonis N, Rual JF, Carvunis AR et al (2009) Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 6(1):47–54. https://doi.org/10.1038/nmeth.1279. (PMID: 10.1038/nmeth.1279191232693057923)
Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86(11):839–848. https://doi.org/10.1016/j.biochi.2004.09.018. (PMID: 10.1016/j.biochi.2004.09.01815589694)
Bertolio R, Napoletano F, Mano M et al (2019) Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun 10(1):1326. https://doi.org/10.1038/s41467-019-09152-7. (PMID: 10.1038/s41467-019-09152-7309029806430766)
Rome S, Lecomte V, Meugnier E et al (2008) Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34(3):327–337. https://doi.org/10.1152/physiolgenomics.90211.2008. (PMID: 10.1152/physiolgenomics.90211.200818559965)
Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M (2008) Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet 4(7):e1000133. https://doi.org/10.1371/journal.pgen.1000133. (PMID: 10.1371/journal.pgen.1000133186546402478640)
Inoue J, Sato R, Maeda M (1998) Multiple DNA elements for sterol regulatory element-binding protein and NF-Y are responsible for sterol-regulated transcription of the genes for human 3-hydroxy-3-methylglutaryl coenzyme A synthase and squalene synthase. J Biochem 123(6):1191–1198. https://doi.org/10.1093/oxfordjournals.jbchem.a022060. (PMID: 10.1093/oxfordjournals.jbchem.a0220609604010)
Pai JT, Guryev O, Brown MS, Goldstein JL (1998) Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273(40):26138–26148. https://doi.org/10.1074/jbc.273.40.26138. (PMID: 10.1074/jbc.273.40.261389748295)
Amemiya-Kudo M, Shimano H, Hasty AH et al (2002) Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 43(8):1220–1235. (PMID: 10.1194/jlr.M100417-JLR20012177166)
Ishimoto K, Tachibana K, Hanano I et al (2010) Sterol-regulatory-element-binding protein 2 and nuclear factor Y control human farnesyl diphosphate synthase expression and affect cell proliferation in hepatoblastoma cells. Biochem J 429(2):347–357. https://doi.org/10.1042/BJ20091511. (PMID: 10.1042/BJ2009151120450493)
Ericsson J, Jackson SM, Edwards PA (1996) Synergistic binding of sterol regulatory element-binding protein and NF-Y to the farnesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene. J Biol Chem 271(40):24359–24364. https://doi.org/10.1074/jbc.271.40.24359. (PMID: 10.1074/jbc.271.40.243598798690)
Abate M, Laezza C, Pisanti S et al (2017) Deregulated expression and activity of farnesyl diphosphate synthase (FDPS) in glioblastoma. Sci Rep 7(1):14123. https://doi.org/10.1038/s41598-017-14495-6. (PMID: 10.1038/s41598-017-14495-6290750415658376)
Griffin S, Preta G, Sheldon IM (2017) Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Sci Rep 7(1):17050. https://doi.org/10.1038/s41598-017-17138-y. (PMID: 10.1038/s41598-017-17138-y292130555719056)
Ha NT, Lee CH (2020) Roles of farnesyl-diphosphate farnesyltransferase 1 in tumour and tumour microenvironments. Cells 9(11):2352. https://doi.org/10.3390/cells9112352. (PMID: 10.3390/cells9112352331138047693003)
Yu H, Rimbert A, Palmer AE et al (2019) GPR146 deficiency protects against hypercholesterolemia and atherosclerosis. Cell 179(6):1276–1288 e1214. https://doi.org/10.1016/j.cell.2019.10.034. (PMID: 10.1016/j.cell.2019.10.034317786546889877)
Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. https://doi.org/10.1038/ng.2797. (PMID: 10.1038/ng.2797240970683838666)
Liu DJ, Peloso GM, Yu H et al (2017) Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 49(12):1758–1766. https://doi.org/10.1038/ng.3977. (PMID: 10.1038/ng.3977290834085709146)
Klarin D, Damrauer SM, Cho K et al (2018) Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50(11):1514–1523. https://doi.org/10.1038/s41588-018-0222-9. (PMID: 10.1038/s41588-018-0222-9302755316521726)
Shyamsunder P, Shanmugasundaram M, Mayakonda A et al (2019) Identification of a novel enhancer of CEBPE essential for granulocytic differentiation. Blood 133(23):2507–2517. https://doi.org/10.1182/blood.2018886077. (PMID: 10.1182/blood.201888607730952671)
Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (1998) Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem 273(26):15906–15912. https://doi.org/10.1074/jbc.273.26.15906. (PMID: 10.1074/jbc.273.26.159069632636)
Stofega MR, Herrington J, Billestrup N, Carter-Su C (2000) Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B. Mol Endocrinol 14(9):1338–1350. https://doi.org/10.1210/mend.14.9.0513. (PMID: 10.1210/mend.14.9.051310976913)
Bauer M, Hackermuller J, Schor J et al (2019) Specific induction of the unique GPR15 expression in heterogeneous blood lymphocytes by tobacco smoking. Biomarkers 24(3):217–224. https://doi.org/10.1080/1354750X.2018.1539769. (PMID: 10.1080/1354750X.2018.153976930387691)
Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT (2019) Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol 7(6):442–451. https://doi.org/10.1016/S2213-8587(19)30087-7. (PMID: 10.1016/S2213-8587(19)30087-7310479016520497)
Mansour Aly D, Dwivedi OP, Prasad RB et al (2021) Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nat Genet 53(11):1534–1542. https://doi.org/10.1038/s41588-021-00948-2. (PMID: 10.1038/s41588-021-00948-234737425)
Schrader S, Perfilyev A, Ahlqvist E et al (2022) Novel Subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diabetes Care 45(7):1621–1630. https://doi.org/10.2337/dc21-2489. (PMID: 10.2337/dc21-2489356077709274219)
Ahlqvist E, Tuomi T, Groop L (2019) Clusters provide a better holistic view of type 2 diabetes than simple clinical features. Lancet Diabetes Endocrinol 7(9):668–669. https://doi.org/10.1016/S2213-8587(19)30257-8. (PMID: 10.1016/S2213-8587(19)30257-831439272)
فهرسة مساهمة: Keywords: Clusters; Lipid metabolism; Long non-coding RNA; Obesity; Two-sample Mendelian randomisation; Type 2 diabetes
المشرفين على المادة: 0 (RNA, Long Noncoding)
0 (Cholesterol, HDL)
0 (Insulins)
0 (GPR15 protein, human)
0 (Receptors, Peptide)
0 (Receptors, G-Protein-Coupled)
تواريخ الأحداث: Date Created: 20230224 Date Completed: 20230508 Latest Revision: 20230523
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10163084
DOI: 10.1007/s00125-023-05886-8
PMID: 36826505
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0428
DOI:10.1007/s00125-023-05886-8