دورية أكاديمية

Molecular modeling of mordant black dye for future applications as visible light harvesting materials with anchors: design and excited state dynamics.

التفاصيل البيبلوغرافية
العنوان: Molecular modeling of mordant black dye for future applications as visible light harvesting materials with anchors: design and excited state dynamics.
المؤلفون: Hassan AU; Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan. hassanabrar2016@gmail.com., Sumrra SH; Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan. sajjadchemist@uog.edu.pk., Mustafa G; Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan., Zubair M; Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan., Mohyuddin A; Department of Chemistry, Emerson University, Multan, Pakistan., Nkungli NK; Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili-Bamenda, Cameroon., Imran M; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.; Department of chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.
المصدر: Journal of molecular modeling [J Mol Model] 2023 Feb 24; Vol. 29 (3), pp. 74. Date of Electronic Publication: 2023 Feb 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9806569 Publication Model: Electronic Cited Medium: Internet ISSN: 0948-5023 (Electronic) Linking ISSN: 09485023 NLM ISO Abbreviation: J Mol Model Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c1996-
مستخلص: Context: In this study, new visible light harvesting dyes (MBR1-MBR5) have been designed as efficient materials with silyl based anchoring abilities on semiconducting units for future dye-solar cells applications. Their unique molecular structures of novel D-π-A Semiconductor type were evaluated thoroughly by density functional theory (DFT) calculations. To enhance the optical performance in visible region, a novel dye structure (MBR) was derived from the chemical structure of mordant black (MB) dye with electron acceptor semiconducting units (MBR1-MBR5).
Methods: The Coulomb-attenuating Becke, 3-parameter, Lee-Yang-Parr (CAM-B3LYP) functional, which had a hybrid and long-range correlation with 6-31G + (d,p), generated a [Formula: see text] (683 nm) that was very comparable to its experimental value (672 nm). The energies of highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), and their HOMO-LUMO energy gaps (HLG) were calculated. Their ionization potentials (IP) varied from 5.616 to 8.320 eV, demonstrating their good electron donating trend. The [Formula: see text] values of dyes displayed a significant red shift from MBR (682 nm) value with range 565-807 nm except MBR1 which was slightly blue shifted. The dye MBR4, which had the smallest HLG (0.23 eV) had the greatest second order nonlinear optical (NLO) response of 144,234 Debye-Angstrom -1 . The DFT calculated results provided insight into the creation of new silyl anchoring groups for future DSSCs material designs with increased stability and effectiveness. The goal of the current study is to forecast the development of novel NLO materials with a D-π-A Semiconductor design that use semiconductors as anchoring groups to adhere to a surface.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Nagar R, Vinayan BP, Samantaray SS, Ramaprabhu S (2017) Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J Mater Chem A 5:22897–22912. https://doi.org/10.1039/C7TA05068B. (PMID: 10.1039/C7TA05068B)
Al-Shahri OA, Ismail FB, Hannan MA et al (2021) Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J Clean Prod 284:125465. https://doi.org/10.1016/j.jclepro.2020.125465. (PMID: 10.1016/j.jclepro.2020.125465)
Karakurt I, Aydin G (2023) Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries. Energy 263:125650. https://doi.org/10.1016/j.energy.2022.125650. (PMID: 10.1016/j.energy.2022.125650)
Hren R, Vujanović A, Van Fan Y et al (2023) Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew Sustain Energy Rev 173:113113. https://doi.org/10.1016/j.rser.2022.113113. (PMID: 10.1016/j.rser.2022.113113)
Gielen D, Boshell F, Saygin D et al (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006. (PMID: 10.1016/j.esr.2019.01.006)
Chen H, Tackie EA, Ahakwa I et al (2022) Does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity. Environ Sci Pollut Res 29:37598–37616. https://doi.org/10.1007/s11356-021-17671-4. (PMID: 10.1007/s11356-021-17671-4)
Malla S (2022) An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal. Energy 238:121810. https://doi.org/10.1016/j.energy.2021.121810. (PMID: 10.1016/j.energy.2021.121810)
Perez M, Perez R (2022) Update 2022 – A fundamental look at supply side energy reserves for the planet. Sol Energy Adv 2:100014. https://doi.org/10.1016/j.seja.2022.100014. (PMID: 10.1016/j.seja.2022.100014)
Lopez G, Aghahosseini A, Child M et al (2022) Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making. Renew Sustain Energy Rev 164:112452. https://doi.org/10.1016/j.rser.2022.112452. (PMID: 10.1016/j.rser.2022.112452)
Hassan AU, Sumrra SH, Zubair M et al (2022) Structurally modulated D-π-D-A(Semiconductor) anchoring dyes to enhance the tunable NLO response: a DFT/TDDFT quest for new photovoltaic materials. Struct Chem. https://doi.org/10.1007/s11224-022-02070-3. (PMID: 10.1007/s11224-022-02070-3)
Younis SA, Kwon EE, Qasim M et al (2020) Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Prog Energy Combust Sci 81:100870. https://doi.org/10.1016/j.pecs.2020.100870. (PMID: 10.1016/j.pecs.2020.100870)
Isaifan RJ, Johnson D, Ackermann L et al (2019) Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol Energy Mater Sol Cells 191:413–421. https://doi.org/10.1016/j.solmat.2018.11.031. (PMID: 10.1016/j.solmat.2018.11.031)
Dindorkar SS, Yadav A (2022) Insights from density functional theory on the feasibility of modified reactive dyes as dye sensitizers in dye-sensitized solar cell applications. Solar 2:12–31. (PMID: 10.3390/solar2010002)
Verma A, Pala RG (2022) Practical semiconductor physics perspective of materials photoelectrochemistry. Curr Opin Electrochem 36:101160. https://doi.org/10.1016/j.coelec.2022.101160. (PMID: 10.1016/j.coelec.2022.101160)
Mauri L, Colombo A, Dragonetti C, Fagnani F (2022) A fascinating trip into iron and copper dyes for DSSCs. Inorganics 10:137. (PMID: 10.3390/inorganics10090137)
Goudjil M, Kheffache D, Rekis M (2022) First principle investigation of new dithienosilole-based dyes for DSSCs: effects of auxiliary acceptor groups. Theor Chem Acc 141:72. https://doi.org/10.1007/s00214-022-02933-2. (PMID: 10.1007/s00214-022-02933-2)
Gopala Krishna J, Roy K (2022) QSPR modeling of absorption maxima of dyes used in dye sensitized solar cells (DSSCs). Spectrochim Acta Part A Mol Biomol Spectrosc 265:120387. https://doi.org/10.1016/j.saa.2021.120387. (PMID: 10.1016/j.saa.2021.120387)
Díez-García MI, Gómez R (2022) Progress in ternary metal oxides as photocathodes for water splitting cells: Optimization strategies. Sol RRL 6:2100871. https://doi.org/10.1002/solr.202100871. (PMID: 10.1002/solr.202100871)
Samantaray N, Parida B, Soga T et al (2022) Recent development and directions in printed perovskite solar cells. Phys status solidi 219:2100629. https://doi.org/10.1002/pssa.202100629. (PMID: 10.1002/pssa.202100629)
Isikgor FH, Zhumagali S, Merino LVT et al (2022) Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat Rev Mater. https://doi.org/10.1038/s41578-022-00503-3. (PMID: 10.1038/s41578-022-00503-3)
Chen J, Peng Q, Peng X et al (2022) Probing and manipulating noncovalent interactions in functional polymeric systems. Chem Rev 122:14594–14678. https://doi.org/10.1021/acs.chemrev.2c00215. (PMID: 10.1021/acs.chemrev.2c0021536054924)
Bilal M, Ullah Rashid E, Zdarta J, Jesionowski T (2023) Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry. Chem Eng J 452:139509. https://doi.org/10.1016/j.cej.2022.139509. (PMID: 10.1016/j.cej.2022.139509)
Fan T, Jian L, Huang X et al (2022) Enhanced photocatalytic activity of multifunctional graphene quantum dots decorated TiO2 film for dye-sensitized solar cells. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-022-09023-w. (PMID: 10.1007/s10854-022-09023-w)
Hairong X, Hao G, Yusuke Y et al (2022) Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res Energy 1:e9120007. https://doi.org/10.26599/NRE.2022.9120007. (PMID: 10.26599/NRE.2022.9120007)
Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. (PMID: 10.1016/j.cplett.2004.06.011)
Hassan AU, Mohyuddin A, Güleryüz C et al (2022) Novel pull–push organic switches with D–π–A structural designs: computational design of star shape organic materials. Struct Chem. https://doi.org/10.1007/s11224-022-01983-3. (PMID: 10.1007/s11224-022-01983-3)
Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2:1–42. https://doi.org/10.1002/wcms.51. (PMID: 10.1002/wcms.51)
Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17. (PMID: 10.1186/1758-2946-4-17228893323542060)
Zhurko GA, Zhurko DA (2009) ChemCraft, version 1.6. http//www.chemcraft/progcom.
Luo J, Xue ZQ, Liu WM et al (2006) Koopmans’ theorem for large molecular systems within density functional theory. J Phys Chem A 110:12005–12009. (PMID: 10.1021/jp063669m17064189)
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785. (PMID: 10.1103/PhysRevB.37.785)
Hassan AU, Sumrra SH, Nazar MF, Güleryüz C (2022) A DFT study on new photovoltaic dyes to investigate their NLO Tuning at near infrared region (NIR) as pull–push effect by end capped acceptors. J Fluoresc. https://doi.org/10.1007/s10895-022-03075-1. (PMID: 10.1007/s10895-022-03075-1365766829795147)
Nosheen E, Shah SM, Hussain H, Murtaza G (2016) Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study. J Photochem Photobiol B Biol 162:583–591. https://doi.org/10.1016/j.jphotobiol.2016.07.033. (PMID: 10.1016/j.jphotobiol.2016.07.033)
Singh Y, Patel RN, Patel SK et al (2019) Experimental and quantum computational study of two new bridged copper(II) coordination complexes as possible models for antioxidant superoxide dismutase: Molecular structures, X-band electron paramagnetic spectra and cryogenic magnetic properties. Polyhedron 171:155–171. https://doi.org/10.1016/j.poly.2019.07.015. (PMID: 10.1016/j.poly.2019.07.015)
Aal SA, Awadh D (2022) The effect of anchoring group on the performances of metal-free phthalocyanine and metallophthalocyanine dye/titanium dioxide interface for dye-sensitized solar cells. Surfaces Interfaces 32:102089. https://doi.org/10.1016/j.surfin.2022.102089. (PMID: 10.1016/j.surfin.2022.102089)
Kaplanis S, Kaplani E, Kaldellis JK (2022) PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency and ageing. Renew Energy 181:235–249. https://doi.org/10.1016/j.renene.2021.08.124. (PMID: 10.1016/j.renene.2021.08.124)
Almogati RN, Aziz SG, Hilal R (2017) Effect of substitution on the optoelectronic properties of dyes for DSSC. A DFT approach. J Theor Comput Chem 16:1750018. https://doi.org/10.1142/S0219633617500183. (PMID: 10.1142/S0219633617500183)
Hassan AU, Mohyuddin A, Nadeem S et al (2022) Structural and electronic (absorption and fluorescence) properties of a stable triplet diphenylcarbene: A DFT study. J Fluoresc. https://doi.org/10.1007/s10895-022-02969-4. (PMID: 10.1007/s10895-022-02969-4365766829795147)
Hassan AU, Sumrra SH (2022) Exploration of pull–push effect for novel photovoltaic dyes with A–π–D design: A DFT/TD-DFT investigation. J Fluoresc. https://doi.org/10.1007/s10895-022-03003-3. (PMID: 10.1007/s10895-022-03003-3365766829795147)
Hassan AU, Sumrra SH, Zafar W, et al (2022) Enriching the compositional tailoring of NLO responsive dyes with diversity oriented electron acceptors as visible light harvesters: a DFT/TD-DFT approach. Mol Phys e2148585. https://doi.org/10.1080/00268976.2022.2148585.
Hassan AU, Sumrra SH, Imran M, Chohan ZH (2022) New 3d multifunctional metal chelates of sulfonamide: Spectral, vibrational, molecular modeling, DFT, medicinal and in silico studies. J MolStruct 132305. https://doi.org/10.1016/j.molstruc.2021.132305.
فهرسة مساهمة: Keywords: ; Anchoring groups; DFT; FMOs; NLO
تواريخ الأحداث: Date Created: 20230224 Date Completed: 20230227 Latest Revision: 20230227
رمز التحديث: 20230227
DOI: 10.1007/s00894-023-05474-y
PMID: 36826696
قاعدة البيانات: MEDLINE
الوصف
تدمد:0948-5023
DOI:10.1007/s00894-023-05474-y