دورية أكاديمية

Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na + /K + -ATPase.

التفاصيل البيبلوغرافية
العنوان: Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na + /K + -ATPase.
المؤلفون: Takada Y; Corporate Planning Department, Otsuka Holdings Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-Ku, Tokyo, 108-8241, Japan. takaday@otsuka.jp., Kaneko K; Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-Ku, Tokyo, 108-8241, Japan., Kawakami Y; YK Consultant LLC, 3-6-2 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
المصدر: The Journal of membrane biology [J Membr Biol] 2023 Jun; Vol. 256 (3), pp. 229-241. Date of Electronic Publication: 2023 Feb 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 0211301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1424 (Electronic) Linking ISSN: 00222631 NLM ISO Abbreviation: J Membr Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, Springer.
مواضيع طبية MeSH: Cardiac Glycosides*/pharmacology, Ouabain/pharmacology ; Sodium-Potassium-Exchanging ATPase/metabolism ; Digoxin/pharmacology ; Digitoxin ; Sugars
مستخلص: The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na + /K + -ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Allen DG, Eisner DA, Wray SC (1985) Birthday present for digitalis. Nature 316:674–675. https://doi.org/10.1038/316674a0. (PMID: 10.1038/316674a04033766)
Askari A (2019) The sodium pump and digitalis drugs: dogmas and fallacies. Pharmacol Res Perspect 7:e00505. https://doi.org/10.1002/prp2.505. (PMID: 10.1002/prp2.505313605246639696)
Bai L, Wang L, Zhao M, Toki A, Hasegawa T, Ogura H, Kataoka T, Hirose K, Sakai J, Bai J, Ando M (2007) Bioactive pregnanes from Nerium oleander. J Nat Prod 70:14–18. https://doi.org/10.1021/np068030o. (PMID: 10.1021/np068030o17253842)
Begum S, Siddiqui BS, Sultana R, Zia A, Suria A (1999) Bio-active cardenolides from the leaves of Nerium oleander. Phytochemistry 50:435–438. https://doi.org/10.1016/s0031-9422(98)00523-8. (PMID: 10.1016/s0031-9422(98)00523-89933955)
Chen YY, Wen SY, Deng CM, Yin XF, Sun ZH, Jiang MM, He QY (2019) Proteomic analysis reveals that odoroside A triggers G2/M arrest and apoptosis in colorectal carcinoma through ROS-p53 pathway. Proteomics 19:e1900092. https://doi.org/10.1002/pmic.201900092. (PMID: 10.1002/pmic.20190009231294914)
Corbeil CR, Williams CI, Labute P (2012) Variability in docking success rates due to dataset preparation. J Comput Aid Mol Des 26:775–786. https://doi.org/10.1007/s10822-012-9570-1. (PMID: 10.1007/s10822-012-9570-1)
Cornelius F, Mahmmoud YA (2003) Themes in ion pump regulation. Ann NYAcad Sci 986:579–586. https://doi.org/10.1111/j.1749-6632.2003.tb07256.x. (PMID: 10.1111/j.1749-6632.2003.tb07256.x)
Eichhorn EJ, Gheorghiade M (2022) Digoxin. Prog Cardiovasc Dis 44:251–266. https://doi.org/10.1053/pcad.2002.31591. (PMID: 10.1053/pcad.2002.31591)
Fu L, Zhang S, Li N, Wang J, Zhao M, Sakai J, Hasegawa T, Mitsui T, Kataoka T, Oka S, Kiuchi M, Hirose K, Ando M (2005) Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. J Nat Prod 68:198–206. https://doi.org/10.1021/np040072u. (PMID: 10.1021/np040072u15730243)
Gheorghiade M, van Veldhuisen DJ, Colucci WS (2006) Contemporary use of digoxin in the management of cardiovascular disorders. Circulation 113:2556–2564. https://doi.org/10.1161/circulationaha.105.560110. (PMID: 10.1161/circulationaha.105.56011016735690)
Hamlyn JM, Blaustein MP (2016) Endogenous ouabain: recent advances and controversies. Hypertension 68:526–532. https://doi.org/10.1161/HYPERTENSIONAHA.116.06599. (PMID: 10.1161/HYPERTENSIONAHA.116.0659927456525)
Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88:6259–6263. https://doi.org/10.1073/pnas.88.14.6259. (PMID: 10.1073/pnas.88.14.6259164873552062)
Hu X, Chen T, Zhang S, Zhang Q, Li C, Wang X (2022) Antitumour effect of odoroside A and its derivative on human leukaemia cells through the ROS/JNK pathway. Basic Clin Pharmacol Toxicol 130:56–69. https://doi.org/10.1111/bcpt.13673. (PMID: 10.1111/bcpt.1367334634178)
Kiran C, Prasad DN (2014) A review on: nerium oleander Linn. (Kaner). Int J Pharmacogn Phytochem Res 6:593–597.
Ko YS, Rugira T, Jin H, Park SW, Kim HJ (2018) Oleandrin and its derivative Odoroside A, both cardiac glycosides, exhibit anticancer effects by inhibiting invasion via suppressing the STAT-3 signaling pathway. Int J Mol Sci 19:3350–3366. https://doi.org/10.3390/ijms19113350. (PMID: 10.3390/ijms19113350303731716274837)
Kometiani P, Liu L, Askari A (2005) Digitalis-induced signaling by Na + /K + -ATPase in human breast cancer cells. Mol Pharmacol 67:929–936. https://doi.org/10.1124/mol.104.007302. (PMID: 10.1124/mol.104.00730215602003)
Laursen M, Yatime L, Nissen P, Fedosova NU (2013) Crystal structure of the high-affinity Na + K + -ATPase-ouabain complex with Mg2 + bound in the cation binding site. Proc Natl Acad Sci USA 110:10958–10963. https://doi.org/10.1073/pnas.1222308110. (PMID: 10.1073/pnas.1222308110237762233704003)
Laursen M, Gregersen JL, Yatime L, Nissen P, Fedosova NU (2015) Structures and characterization of digoxin- and bufalin-bound Na + , K + -ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci USA 112:1755–1760. https://doi.org/10.1073/pnas.1422997112. (PMID: 10.1073/pnas.1422997112256244924330780)
Manna SK, Sah NK, Newman RA, Cisneros A, Aggarwal BB (2000) Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res 60:3838–3847. (PMID: 10919658)
Manunta P, Ferrandi M, Bianchi G, Hamlyn JM (2009) Endogenous ouabain in cardiovascular function and disease. J Hypertens 27:9–18. https://doi.org/10.1097/HJH.0b013e32831cf2c6. (PMID: 10.1097/HJH.0b013e32831cf2c619050443)
Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G, Schlemmer F, Sulpice E, Locher C, Gidrol X, Ghiringhelli F, Modjtahedi N, Galluzzi L, André F, Zitvogel L, Kepp O, Kroemer G (2012) Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 4:143ra99. https://doi.org/10.1126/scitranslmed.3003807. (PMID: 10.1126/scitranslmed.300380722814852)
Nishioka T, Endo-Umeda K, Ito Y, Shimoda A, Takeuchi A, Tode C, Hirota Y, Osakabe N, Makishima M, Suhara Y (2019) Synthesis and in vitro evaluation of novel liver X receptor agonists based on naphthoquinone derivatives. Molecules 24:4316–4326. https://doi.org/10.3390/molecules24234316. (PMID: 10.3390/molecules24234316317791816930623)
Okina Y, Takeuchi F, Yokomichi T, Takada Y, Kataoka T (2015) Cardenolide aglycones inhibit tumor necrosis factor α-induced expression of intercellular adhesion molecule-1 at the translation step by blocking Na+/K+-ATPase. Biological and Pharmaceutical Bulletin. 38(1):39–47. (PMID: 10.1248/bpb.b14-0053225744456)
Paula S, Tabet MR, Ball WJ (2005) Interactions between cardiac glycosides and sodium/potassium-ATPase: three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry 44:498–510. https://doi.org/10.1021/bi048680w. (PMID: 10.1021/bi048680w15641774)
Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935. https://doi.org/10.1038/nrd2682. (PMID: 10.1038/nrd268218948999)
Qiu LY, Koenderink JB, Swarts HG, Willems PH, De Pont JJ (2003) Phe783, Thr797, and Asp804 in transmembrane hairpin M5–M6 of Na + , K + -ATPase play a key role in ouabain binding. J Biol Chem 278:47240–47244. https://doi.org/10.1074/jbc.M308833200. (PMID: 10.1074/jbc.M30883320012972417)
Ren YP, Zhang MJ, Zhang T, Huang RW (2014) Dual effects of ouabain on the regulation of proliferation and apoptosis in human umbilical vein endothelial cells: involvement of Na(+)-K(+)-ATPase α-subunits and NF-κB. Int J Clin Exp Med 7:1214–1222. (PMID: 249950764073737)
Rose AM, Valdes R (1994) Understanding the sodium pump and its relevance to disease. Clin Chem 40:1674–1685. https://doi.org/10.1093/clinchem/40.9.1674. (PMID: 10.1093/clinchem/40.9.16748070076)
Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269:2440–2448. https://doi.org/10.1046/j.1432-1033.2002.02911.x. (PMID: 10.1046/j.1432-1033.2002.02911.x12027881)
Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293:C509–C536. https://doi.org/10.1152/ajpcell.00098.2007. (PMID: 10.1152/ajpcell.00098.200717494630)
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S (2021) Repurposing cardiac glycosides: drugs for heart failure surmounting viruses. Molecules 26:5627–5646. https://doi.org/10.3390/molecules26185627. (PMID: 10.3390/molecules26185627345770978469069)
Takada Y, Matsuo K, Ogura H, Bai L, Toki A, Wang L, Ando M, Kataoka T (2009) Odoroside A and ouabain inhibit Na + /K + -ATPase and prevent NF-kappaB-inducible protein expression by blocking Na + -dependent amino acid transport. Biochem Pharmacol 78:1157–1166. https://doi.org/10.1016/j.bcp.2009.06.027. (PMID: 10.1016/j.bcp.2009.06.02719559678)
Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566. https://doi.org/10.1152/ajpcell.2000.279.3.C541. (PMID: 10.1152/ajpcell.2000.279.3.C54110942705)
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334. (PMID: 10.1002/jcc.21334194995763041641)
Tu W, Qian S (2019) Anti-epileptic effect of 16-O-acetyldigitoxigenin via suppressing mTOR signaling pathway. Cell Mol Biol 65:59–63. https://doi.org/10.14715/cmb/2019.65.5.10. (PMID: 10.14715/cmb/2019.65.5.1031304908)
Van Quaquebeke E, Simon G, André A, Dewelle J, El Yazidi M, Bruyneel F, Tuti J, Nacoulma O, Guissou P, Decaestecker C, Braekman JC, Kiss R, Darro F (2005) Identification of a novel cardenolide (2′′-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 48:849–856. https://doi.org/10.1021/jm049405a. (PMID: 10.1021/jm049405a15689169)
Whayne TF (2018) Clinical use of digitalis: a state of the art review. Am J Cardiovasc Drugs 18:427–440. https://doi.org/10.1007/s40256-018-0292-1. (PMID: 10.1007/s40256-018-0292-130066080)
Xie Z, Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269:2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x. (PMID: 10.1046/j.1432-1033.2002.02910.x12027880)
Zhang W, Liu M, Yang L, Huang F, Lan Y, Li H, Wu H, Zhang B, Shi H, Wu X (2019) P-glycoprotein inhibitor tariquidar potentiates efficacy of astragaloside IV in experimental autoimmune encephalomyelitis mice. Molecules 24:561–575. https://doi.org/10.3390/molecules24030561. (PMID: 10.3390/molecules24030561307174946384695)
Zhao M, Zhang S, Fu L, Li N, Bai J, Sakai J, Wang L, Tang W, Hasegawa T, Ogura H, Kataoka T, Oka S, Kiuch M, Hirose K, Ando M (2006) Taraxasterane- and ursane-type triterpenes from Nerium oleander and their biological activities. J Nat Prod 69:1164–1167. https://doi.org/10.1021/np0680073. (PMID: 10.1021/np068007316933868)
Zhao M, Bai L, Wang L, Toki A, Hasegawa T, Kikuchi M, Abe M, Sakai J, Hasegawa R, Bai Y, Mitsui T, Ogura H, Kataoka T, Oka S, Tsushima H, Kiuchi M, Hirose K, Tomida A, Tsuruo T, Ando M (2007) Bioactive cardenolides from the stems and twigs of Nerium oleander. J Nat Prod 70:1098–1103. https://doi.org/10.1021/np068066g. (PMID: 10.1021/np068066g17595134)
فهرسة مساهمة: Keywords: Digitoxin; Digoxin; Docking simulation; Na+/K+-ATPase; Odoroside A; Ouabain
المشرفين على المادة: 0 (Cardiac Glycosides)
5ACL011P69 (Ouabain)
0 (odoroside)
EC 7.2.2.13 (Sodium-Potassium-Exchanging ATPase)
73K4184T59 (Digoxin)
E90NZP2L9U (Digitoxin)
0 (Sugars)
تواريخ الأحداث: Date Created: 20230225 Date Completed: 20230529 Latest Revision: 20230626
رمز التحديث: 20231215
DOI: 10.1007/s00232-023-00281-1
PMID: 36840763
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1424
DOI:10.1007/s00232-023-00281-1