دورية أكاديمية

Continuous symmetry breaking in a two-dimensional Rydberg array.

التفاصيل البيبلوغرافية
العنوان: Continuous symmetry breaking in a two-dimensional Rydberg array.
المؤلفون: Chen C; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France., Bornet G; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France., Bintz M; Department of Physics, University of California, Berkeley, CA, USA., Emperauger G; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France., Leclerc L; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France.; PASQAL SAS, Massy, France., Liu VS; Department of Physics, University of California, Berkeley, CA, USA., Scholl P; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France.; California Institute of Technology, Pasadena, CA, USA., Barredo D; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France.; Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo (UO), El Entrego, Spain., Hauschild J; Department of Physics, University of California, Berkeley, CA, USA.; Department of Physics, Technical University of Munich, Garching, Germany.; Munich Center for Quantum Science and Technology (MCQST), München, Germany., Chatterjee S; Department of Physics, University of California, Berkeley, CA, USA., Schuler M; Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria., Läuchli AM; Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria.; Laboratory for Theoretical and Computational Physics, Paul Scherrer Institute, Villigen, Switzerland.; Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland., Zaletel MP; Department of Physics, University of California, Berkeley, CA, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Lahaye T; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France., Yao NY; Department of Physics, University of California, Berkeley, CA, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; Department of Physics, Harvard University, Cambridge, MA, USA., Browaeys A; Institute of Optics Graduate School, CNRS, Charles Fabry Laboratory, University of Paris-Saclay, Palaiseau Cedex, France. antoine.browaeys@institutoptique.fr.
المصدر: Nature [Nature] 2023 Apr; Vol. 616 (7958), pp. 691-695. Date of Electronic Publication: 2023 Feb 27.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S.; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions 1-3 . The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase 4,5 . Here, we realize a two-dimensional dipolar XY model that shows a continuous spin-rotational symmetry using a programmable Rydberg quantum simulator. We demonstrate the adiabatic preparation of correlated low-temperature states of both the XY ferromagnet and the XY antiferromagnet. In the ferromagnetic case, we characterize the presence of a long-range XY order, a feature prohibited in the absence of long-range dipolar interaction. Our exploration of the many-body physics of XY interactions complements recent works using the Rydberg-blockade mechanism to realize Ising-type interactions showing discrete spin rotation symmetry 6-9 .
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Landau, L. D. On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 11, 19 (1937).
Landau, L. D. & Ginzburg, V. L. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
Kepler, J. De Nive Sexangula (Gottfried Tampach, 1611).
Goldstone, J. Field theories with ‘Superconductor’ solutions. Il Nuovo Cimento 19, 154–164 (1961). (PMID: 10.1007/BF02812722)
Tasaki, H. Physics and Mathematics of Quantum Many-Body Systems (Springer International Publishing, 2020).
Schauß, P. et al. Crystallization in Ising quantum magnets. Science 347, 1455–1458 (2015). (PMID: 2581457910.1126/science.1258351)
Guardado-Sanchez, E. et al. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018).
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021). (PMID: 3423433510.1038/s41586-021-03585-1)
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021). (PMID: 3423433410.1038/s41586-021-03582-4)
Bloch, F. Zur Theorie des Ferromagnetismus. Zeitschrift Phys. 61, 206–219 (1930). (PMID: 10.1007/BF01339661)
Peierls, R. Quelques propriétés typiques des corps solides. Annales de l’institut Henri Poincaré 5, 177–122 (1935).
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966). (PMID: 10.1103/PhysRevLett.17.1133)
Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967). (PMID: 10.1103/PhysRev.158.383)
Bruno, P. Absence of spontaneous magnetic order at nonzero temperature in one- and two-dimensional Heisenberg and XY systems with long-range interactions. Phys. Rev. Lett. 87, 137203 (2001). (PMID: 1158062310.1103/PhysRevLett.87.137203)
Defenu, N. et al. Long-range interacting quantum systems. Preprint at https://arxiv.org/abs/2109.01063 (2021).
Dyson, F. J. Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91–107 (1969). (PMID: 10.1007/BF01645907)
Kunz, H. & Pfister, C. E. First order phase transition in the plane rotator ferromagnetic model in two dimensions. Commun. Math. Phys. 46, 245–251 (1976). (PMID: 10.1007/BF01609121)
Maleev, S. V. Dipole forces in two-dimensional and layered ferromagnets. Soviet J. Exp. Theor. Phys. 43, 1240 (1976).
Fröhlich, J., Israel, R., Lieb, E. H. & Simon, B. Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978). (PMID: 10.1007/BF01940327)
Diep, H. T. (ed.) Frustrated Spin Systems 2nd edn (World Scientific, 2013).
Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008). (PMID: 1817249310.1038/nature06433)
Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018). (PMID: 10.1038/s41567-017-0030-7)
Keleş, A. & Zhao, E. Absence of long-range order in a triangular spin system with dipolar interactions. Phys. Rev. Lett. 120, 187202 (2018). (PMID: 2977532510.1103/PhysRevLett.120.187202)
Keleş, A. & Zhao, E. Renormalization group analysis of dipolar Heisenberg model on square lattice. Phys. Rev. B 97, 245105 (2018). (PMID: 10.1103/PhysRevB.97.245105)
De’Bell, K., MacIsaac, A. B. & Whitehead, J. P. Dipolar effects in magnetic thin films and quasi-two-dimensional systems. Rev. Mod. Phys. 72, 225–257 (2000). (PMID: 10.1103/RevModPhys.72.225)
Taroni, A., Bramwell, S. T. & Holdsworth, P. C. W. Universal window for two-dimensional critical exponents. J. Phys. Condens. Matter 20, 275233 (2008). (PMID: 2169439410.1088/0953-8984/20/27/275233)
Peter, D., Müller, S., Wessel, S. & Büchler, H. P. Anomalous behavior of spin systems with dipolar interactions. Phys. Rev. Lett. 109, 025303 (2012). (PMID: 2303017510.1103/PhysRevLett.109.025303)
Mazurenko, A. et al. A cold-atom Fermi-Hubbard antiferromagnet. Nature 545, 462–466 (2017). (PMID: 2854132410.1038/nature22362)
Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013). (PMID: 2404847810.1038/nature12483)
Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023). (PMID: 3672599810.1038/s41586-022-05558-4)
Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).
Leo, N. et al. Collective magnetism in an artificial 2D XY spin system. Nat. Commun. 9, 2850 (2018). (PMID: 30030427605466810.1038/s41467-018-05216-2)
Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014). (PMID: 2500852510.1038/nature13450)
Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014). (PMID: 2500852610.1038/nature13461)
Maghrebi, M. F., Gong, Z.-X. & Gorshkov, A. V. Continuous symmetry breaking in 1D long-range interacting quantum systems. Phys. Rev. Lett. 119, 023001 (2017). (PMID: 28753374646727110.1103/PhysRevLett.119.023001)
Feng, L. et al. Continuous symmetry breaking in a trapped-ion spin chain. Preprint at https://arxiv.org/abs/2211.01275 (2022).
Yang, C. N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962). (PMID: 10.1103/RevModPhys.34.694)
Berezinskiǐ, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Soviet J. Exp. Theor. Phys. 32, 493 (1971).
Berezinskiǐ, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Soviet J. Exp. Theor. Phys. 34, 610 (1972).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. Solid State Phys. 6, 1181–1203 (1973). (PMID: 10.1088/0022-3719/6/7/010)
Kosterlitz, J. M. The critical properties of the two-dimensional XY model. J. Phys. C Solid State Phys. 7, 1046–1060 (1974). (PMID: 10.1088/0022-3719/7/6/005)
Giachetti, G., Defenu, N., Ruffo, S. & Trombettoni, A. Berezinskii-Kosterlitz-Thouless phase transitions with long-range couplings. Phys. Rev. Lett. 127, 156801 (2021). (PMID: 3467802610.1103/PhysRevLett.127.156801)
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132 (2020). (PMID: 10.1038/s41567-019-0733-z)
Sørensen, A. S. et al. Adiabatic preparation of many-body states in optical lattices. Phys. Rev. A. 81, 061603 (2010). (PMID: 10.1103/PhysRevA.81.061603)
Sandvik, A. W. & Hamer, C. J. Ground-state parameters, finite-size scaling, and low-temperature properties of the two-dimensional S = 1/2 XY model. Phys. Rev. B 60, 6588–6593 (1999). (PMID: 10.1103/PhysRevB.60.6588)
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). (PMID: 1004660810.1103/PhysRevLett.69.2863)
Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes 5 (2018).
Anderson, P. W. An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694–701 (1952). (PMID: 10.1103/PhysRev.86.694)
Anderson, P. W. Basic Notions of Condensed Matter Physics (Perseus Publishing, 2010).
Tasaki, H. Long-range order, ‘tower’ of states, and symmetry breaking in lattice quantum systems. J. Stat. Phys. 174, 735–761 (2019). (PMID: 10.1007/s10955-018-2193-8)
Beekman, A., Rademaker, L. & van Wezel, J. An introduction to spontaneous symmetry breaking. SciPost Physics Lecture Notes 11 (2019).
Comparin, T., Mezzacapo, F. & Roscilde, T. Robust spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians. Phys. Rev. A 105, 022625 (2022). (PMID: 10.1103/PhysRevA.105.022625)
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary 2D atomic arrays. Science 354, 1021–1023 (2016). (PMID: 2781128510.1126/science.aah3778)
de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A 97, 053803 (2018). (PMID: 10.1103/PhysRevA.97.053803)
Kennedy, T., Lieb, E. H. & Shastry, B. S. in Statistical Mechanics (eds Nachtergaele, B. et al.) 327–329 (Springer, 1988).
Björnberg, J. E. & Ueltschi, D. Reflection positivity and infrared bounds for quantum spin systems. In The Physics and Mathematics of Elliott Lieb 77–108 (EMS Press, 2022).
Stoudenmire, E. & White, S. R. Studying two-dimensional systems with the density matrix renormalization group. Ann. Rev. Condens. Matter Phys. 3, 111–128 (2012). (PMID: 10.1146/annurev-conmatphys-020911-125018)
Hastings, M. B. & Koma, T. Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). (PMID: 10.1007/s00220-006-0030-4)
Lienhard, V. et al. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising antiferromagnets. Phys. Rev. X 8, 021070 (2018).
de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019). (PMID: 3137156310.1126/science.aav9105)
Jensen, P. J., Bennemann, K. H., Morr, D. K. & Dreyssé, H. Two-dimensional Heisenberg antiferromagnet in a transverse field. Phys. Rev. B 73, 144405 (2006). (PMID: 10.1103/PhysRevB.73.144405)
Kar, S., Wierschem, K. & Sengupta, P. Magnons in a two-dimensional transverse-field XXZ model. Phys. Rev. B 96, 045126 (2017). (PMID: 10.1103/PhysRevB.96.045126)
Gu, S.-J. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371–4458 (2010). (PMID: 10.1142/S0217979210056335)
Zaletel, M. P., Mong, R. S. K., Karrasch, C., Moore, J. E. & Pollmann, F. Time-evolving a matrix product state with long-ranged interactions. Phys. Rev. B 91, 165112 (2015). (PMID: 10.1103/PhysRevB.91.165112)
Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968). (PMID: 10.1103/PhysRev.176.250)
Fröhlich, J. & Pfister, C. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81, 277–298 (1981). (PMID: 10.1007/BF01208901)
Tobochnik, J. & Chester, G. V. Monte Carlo study of the planar spin model. Phys. Rev. B 20, 3761–3769 (1979). (PMID: 10.1103/PhysRevB.20.3761)
Ueda, A. & Oshikawa, M. Resolving the Berezinskii-Kosterlitz-Thouless transition in the two-dimensional XY model with tensor-network-based level spectroscopy. Phys. Rev. B 104, 165132 (2021). (PMID: 10.1103/PhysRevB.104.165132)
Ding, H.-Q. & Makivić, M. S. Kosterlitz-Thouless transition in the two-dimensional quantum XY model. Phys. Rev. B 42, 6827–6830 (1990). (PMID: 10.1103/PhysRevB.42.6827)
Ding, H.-Q. Phase transition and thermodynamics of quantum XY model in two dimensions. Phys. Rev. B 45, 230–242 (1992). (PMID: 10.1103/PhysRevB.45.230)
Romano, S. Computer simulation study of a long-range plane-rotator system in two dimensions. Nuovo Cim, B 100, 447–466 (1987).
Romano, S. Computer-simulation study of a disordered plane-rotator system in two dimensions with long-range ferromagnetic interactions. Phys. Rev. B 42, 8647–8650 (1990). (PMID: 10.1103/PhysRevB.42.8647)
Fisher, M. E., Ma, S.-k & Nickel, B. G. Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972). (PMID: 10.1103/PhysRevLett.29.917)
Sak, J. Recursion relations and fixed points for ferromagnets with long-range interactions. Phys. Rev. B 8, 281–285 (1973). (PMID: 10.1103/PhysRevB.8.281)
Stoudenmire, E. M. & White, S. R. Minimally entangled typical thermal state algorithms. New J. Phys. 12, 055026 (2010). (PMID: 10.1088/1367-2630/12/5/055026)
Binder, M. & Barthel, T. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles. Phys. Rev. B 95, 195148 (2017). (PMID: 10.1103/PhysRevB.95.195148)
Gubernatis, J., Kawashima, N. & Werner, P. Quantum Monte Carlo Methods: Algorithms for Lattice Models 1st edn (Cambridge Univ. Press, 2016).
Syljuasen, O. F. & Sandvik, A. W. Quantum Monte Carlo with directed loops. Phys. Rev. E 66, 046701 (2002). (PMID: 10.1103/PhysRevE.66.046701)
Calabrese, P. & Cardy, J. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). (PMID: 1671201510.1103/PhysRevLett.96.136801)
معلومات مُعتمدة: W911NF-21-1-0262 Army Research Grant; W911NF-20-1-0136 Army Research Grant
تواريخ الأحداث: Date Created: 20230227 Date Completed: 20230505 Latest Revision: 20231122
رمز التحديث: 20231215
DOI: 10.1038/s41586-023-05859-2
PMID: 36848931
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-05859-2