دورية أكاديمية

Enhanced degradation of emerging contaminants by percarbonate/Fe(II)-ZVI process: case study with nizatidine.

التفاصيل البيبلوغرافية
العنوان: Enhanced degradation of emerging contaminants by percarbonate/Fe(II)-ZVI process: case study with nizatidine.
المؤلفون: Huo M; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Zou D; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Lin Y; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China. linyingzi@jlju.edu.cn.; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China. linyingzi@jlju.edu.cn., Lou Y; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Liu G; School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China., Li S; School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China., Chen L; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Yuan B; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Zhang Q; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China., Hou A; School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Apr; Vol. 30 (18), pp. 53309-53322. Date of Electronic Publication: 2023 Mar 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Iron* , Water Pollutants, Chemical*/analysis, Nizatidine ; Oxidation-Reduction ; Ferrous Compounds
مستخلص: Pharmaceuticals have recently emerged as a significant environmental concern due to the growth of population, expansion of industry, and the shift in modern lifestyles. Herein, we present a Fe(II)/percarbonate (SPC) process with dramatically enhanced efficiency by the introduction of zerovalent iron (ZVI). After the addition of ZVI, the removal rate of nizatidine (NZTD) went up from 71.7 to 84.2%. The removal rate of NZTD decreases with rising pH and speeds up with increasing temperature. It was found that under the condition of pH = 7 and T = 25 °C, the molar ratio of the optimal concentration of NZTD degradation in the system was [NZTD] 0 :[SPC] 0 :[Fe(II)] 0 :[ZVI] 0  = 1:8:24:16, with a degradation rate of 99.8%. At the same time, target pollutants can also be successfully eliminated from actual water bodies. Moreover, we test for toxicity using luminescent bacteria, and the results demonstrate that the system is capable of effectively decreasing the toxicity of NZTD. The research findings can contribute to the clarification of the migration and transformation law of NZTD in the oxidation process, thereby providing a scientific basis and technical support for the removal of NZTD in the tertiary water treatment for a water source.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Besse J-P, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123. https://doi.org/10.1016/j.toxlet.2007.10.012. (PMID: 10.1016/j.toxlet.2007.10.012)
Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H 2 O 2 in advanced oxidation processes. J Hazard Mater 275:121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054. (PMID: 10.1016/j.jhazmat.2014.04.054)
Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O — in aqueous solution). J Phys Chem Ref Data 17:513–886. https://doi.org/10.1063/1.555805. (PMID: 10.1063/1.555805)
Chen C, Shi X, Yang Z et al (2019) An integrated method for controlling the offensive odor and suspended matter originating from algae-induced black blooms. Chemosphere 221:526–532. https://doi.org/10.1016/j.chemosphere.2019.01.072. (PMID: 10.1016/j.chemosphere.2019.01.072)
Choi K, Kim Y, Park J et al (2008) Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci Total Environ 405:120–128. https://doi.org/10.1016/j.scitotenv.2008.06.038. (PMID: 10.1016/j.scitotenv.2008.06.038)
Cui H, Gu X, Lu S et al (2017) Degradation of ethylbenzene in aqueous solution by sodium percarbonate activated with EDDS–Fe(III) complex. Chem Eng J 309:80–88. https://doi.org/10.1016/j.cej.2016.10.029. (PMID: 10.1016/j.cej.2016.10.029)
De Laat J, Dao YH, Hamdi El Najjar N, Daou C (2011) Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. Water Res 45:5654–5664. https://doi.org/10.1016/j.watres.2011.08.028. (PMID: 10.1016/j.watres.2011.08.028)
de Luna MDG, Sablas MM, Hung C-M et al (2020) Modeling and optimization of imidacloprid degradation by catalytic percarbonate oxidation using artificial neural network and Box-Behnken experimental design. Chemosphere 251:126254. https://doi.org/10.1016/j.chemosphere.2020.126254. (PMID: 10.1016/j.chemosphere.2020.126254)
Dong H, Qiang Z, Lian J, Qu J (2017) Degradation of nitro-based pharmaceuticals by UV photolysis: kinetics and simultaneous reduction on halonitromethanes formation potential. Water Res 119:83–90. https://doi.org/10.1016/j.watres.2017.04.049. (PMID: 10.1016/j.watres.2017.04.049)
Du Y, Lv X-T, Wu Q-Y et al (2017) Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: a review. J Environ Sci 58:51–63. https://doi.org/10.1016/j.jes.2017.01.013. (PMID: 10.1016/j.jes.2017.01.013)
Fu X, Gu X, Lu S et al (2015) Benzene depletion by Fe 2+ -catalyzed sodium percarbonate in aqueous solution. Chem Eng J 267:25–33. https://doi.org/10.1016/j.cej.2014.12.104. (PMID: 10.1016/j.cej.2014.12.104)
Fu X, Dionysiou DD, Brusseau ML et al (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733–15742. https://doi.org/10.1007/s11356-018-1708-9. (PMID: 10.1007/s11356-018-1708-9)
Gamarra-Güere CD, Dionisio D, Santos GOS et al (2022) Application of Fenton, photo-Fenton and electro-Fenton processes for the methylparaben degradation: a comparative study. J Environ Chem Eng 10:106992. https://doi.org/10.1016/j.jece.2021.106992. (PMID: 10.1016/j.jece.2021.106992)
Georgi A, Schierz A, Trommler U et al (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B 72:26–36. https://doi.org/10.1016/j.apcatb.2006.10.009. (PMID: 10.1016/j.apcatb.2006.10.009)
Han X, Lu H, Gao Y et al (2020) The role of in situ Fenton coagulation on the removal of benzoic acid. Chemosphere 238:124632. https://doi.org/10.1016/j.chemosphere.2019.124632. (PMID: 10.1016/j.chemosphere.2019.124632)
Huang J, Zhou Z, Ali M et al (2021) Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 281:130798. https://doi.org/10.1016/j.chemosphere.2021.130798. (PMID: 10.1016/j.chemosphere.2021.130798)
Iwagami M, Kumazawa R, Miyamoto Y et al (2021) Risk of cancer in association with ranitidine and nizatidine vs other H2 blockers: analysis of the Japan Medical Data Center Claims Database 2005–2018. Drug Saf 44:361–371. https://doi.org/10.1007/s40264-020-01024-0. (PMID: 10.1007/s40264-020-01024-0)
Junges C, Vidal E, Attademo A et al (2013) Effectiveness evaluation of glyphosate oxidation employing the H 2 O 2 /UVC process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles. J Environ Sci Health B 48:163–170. https://doi.org/10.1080/03601234.2013.730011. (PMID: 10.1080/03601234.2013.730011)
Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chem Rev 107:2319–2364. https://doi.org/10.1021/cr020441w. (PMID: 10.1021/cr020441w)
Kumar A, Naushad M, Rana A et al (2017) ZnSe-WO 3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis. Int J Biol Macromol 104:1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116. (PMID: 10.1016/j.ijbiomac.2017.06.116)
László W, Tóth T, Takács E (2022) Rate constants of carbonate radical anion reactions with molecules of environmental interest in aqueous solution: a review. Sci Total Environ 717:13721. https://doi.org/10.1016/j.scitotenv.2020.137219. (PMID: 10.1016/j.scitotenv.2020.137219)
Li L, Huang J, Hu X et al (2019) Activation of sodium percarbonate by vanadium for the degradation of aniline in water: mechanism and identification of reactive species. Chemosphere 215:647–656. https://doi.org/10.1016/j.chemosphere.2018.10.047. (PMID: 10.1016/j.chemosphere.2018.10.047)
Liu J, Dong C, Deng Y, Ji J, Bao S, Chen C, Shen B, Zhang J, Xing M (2018) Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli. Water Res 145:312–320. https://doi.org/10.1016/j.watres.2018.08.039. (PMID: 10.1016/j.watres.2018.08.039)
Lyu Y, Lyu S, Tang P et al (2020) Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(II)-citric acid complex in the presence of surfactant Tween-80. Chemosphere 257:127223. https://doi.org/10.1016/j.chemosphere.2020.127223. (PMID: 10.1016/j.chemosphere.2020.127223)
Marzouqi FA, Al-Balushi NA, Kuvarega AT et al (2021) Thermal and hydrothermal synthesis of WO 3 nanostructure and its optical and photocatalytic properties for the degradation of cephalexin and nizatidine in aqueous solution. Materials Science and Engineering: B 264:114991. https://doi.org/10.1016/j.mseb.2020.114991. (PMID: 10.1016/j.mseb.2020.114991)
Miao Z, Gu X, Lu S et al (2015) Perchloroethylene (PCE) oxidation by percarbonate in Fe 2+ -catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere 119:1120–1125. https://doi.org/10.1016/j.chemosphere.2014.09.065. (PMID: 10.1016/j.chemosphere.2014.09.065)
Nalliah RE (2019) Reaction of FD&C Blue 1 with sodium percarbonate: multiple kinetics methods using an inexpensive light meter. J Chem Educ 96:1453–1457. https://doi.org/10.1021/acs.jchemed.8b00589. (PMID: 10.1021/acs.jchemed.8b00589)
Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564. (PMID: 10.1080/10643380500326564)
Qian Y, Huang J, Liu X et al (2020) Rapid oxidation of histamine H2-receptor antagonists by peroxymonosulfate during water treatment: kinetics, products, and toxicity evaluation. Water Res 185:116278. https://doi.org/10.1016/j.watres.2020.116278. (PMID: 10.1016/j.watres.2020.116278)
Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69. https://doi.org/10.1016/j.jiec.2014.05.005. (PMID: 10.1016/j.jiec.2014.05.005)
Rao PV, Kumar MR, Prasad V, Rao DD (2014) Stability-indicating LC method for the estimation of nizatidine impurities in nizatidine oral solution. J Liq Chromatogr Relat Technol 37:1065–1078. https://doi.org/10.1080/10826076.2013.765461. (PMID: 10.1080/10826076.2013.765461)
Rott E, Minke R, Bali U, Steinmetz H (2017) Removal of phosphonates from industrial wastewater with UV/FeII, Fenton and UV/Fenton treatment. Water Res 122:345–354. https://doi.org/10.1016/j.watres.2017.06.009. (PMID: 10.1016/j.watres.2017.06.009)
Sanad MH,Saleh GM,Marzook FA (2017) 尼扎替丁作为用于消化性溃疡病检测的新型高选择性放射性示踪剂的放射性碘化和生物学评估。J 标记为 Comp Radiopharm 60:600–607。 https://doi.org/10.1002/jlcr.3541. (PMID: 10.1002/jlcr.3541)
Shen R, Andrews SA (2011) 在氯胺消毒过程中演示20种药品和个人护理产品(PPCPs)作为亚硝胺前体。水研究45:944-952。 https://doi.org/10.1016/j.watres.2010.09.036. (PMID: 10.1016/j.watres.2010.09.036)
Vela N, Calín M, Yáñez-Gascón MJ 等人 (2019) 使用ZnO/Na的太阳能多相光催化去除废水废水中具有内分泌干扰物活性的农药 2 S 2 O 8 .水空气土壤污染230:134。 https://doi.org/10.1007/s11270-019-4185-y. (PMID: 10.1007/s11270-019-4185-y)
Venny, Gan S, Ng HK (2012) 多环芳烃(PAH)污染土壤的无机螯合改性芬顿处理。化学工程杂志180:1-8。 https://doi.org/10.1016/j.cej.2011.10.082. (PMID: 10.1016/j.cej.2011.10.082)
Vicente F,Rosas JM,Santos A,Romero A (2011)通过在类似芬顿的过程中使用稳定剂和螯合剂来改善土壤修复。化学工程杂志172:689-697。 https://doi.org/10.1016/j.cej.2011.06.036. (PMID: 10.1016/j.cej.2011.06.036)
Viciosa MT,Moura Ramos JJ,Diogo HP (2016)无定形药物西咪替丁,尼扎替丁和法莫替丁中的缓慢松弛动力学。J Pharm Sci 105:3573–3584。 https://doi.org/10.1016/j.xphs.2016.08.019. (PMID: 10.1016/j.xphs.2016.08.019)
Viisimaa M,Goi A (2014)使用过氧化氢和过碳酸盐处理氯化芳烃污染的土壤。J 环境工程 马纳格 22:30-39。 https://doi.org/10.3846/16486897.2013.804827. (PMID: 10.3846/16486897.2013.804827)
Wang T, Zhou Y, Cao S et al (2019) Fenton样反应降解磺胺并利用响应面方法优化。生态毒理环境安全172:334-340。 https://doi.org/10.1016/j.ecoenv.2019.01.106. (PMID: 10.1016/j.ecoenv.2019.01.106)
杨蓉, 曾国, 徐志 等 (2021) H脱萘性能比较 2 O 2 、过碳酸钠和过氧化钙氧化剂被亚铁离子活化及降解机理。化学圈283:131209。 https://doi.org/10.1016/j.chemosphere.2021.131209. (PMID: 10.1016/j.chemosphere.2021.131209)
张斌彤, 张彦, 滕莹, 范敏 (2015) 硫酸根基及其在净化技术中的应用.Crit Rev Environ Sci Technol 45:1756–1800。 https://doi.org/10.1080/10643389.2014.970681. (PMID: 10.1080/10643389.2014.970681)
Zhang S, Hu X, Li L et al (2018) 用亚铁离子活化过碳酸钠以降解水溶液中的氯苯:机制、途径和与过氧化氢的比较。环境化学14:486-494。 https://doi.org/10.1071/EN17137. (PMID: 10.1071/EN17137)
张炳棠, 匡林, 滕荹, 等 (2021) 过碳酸酯和过氧单碳酸酯在净化技术中的应用。环境科学杂志105:100-115。 https://doi.org/10.1016/j.jes.2020.12.031. (PMID: 10.1016/j.jes.2020.12.031)
معلومات مُعتمدة: Grant No. 51778267 Innovative Research Group Project of the National Natural Science Foundation of China; No. 2012ZX07408001 National Major Science and Technology Projects of China; No. 20190201113JC Science and Technology Support Program of Jiangsu Province; No.2019-15 Jilin Provincial Health and Family Planning Commission
فهرسة مساهمة: Keywords: Biotoxicity; Nizatidine; Percarbonate; Reactive oxygen species
المشرفين على المادة: E1UOL152H7 (Iron)
Z7G82NV92P (sodium percarbonate)
P41PML4GHR (Nizatidine)
0 (Water Pollutants, Chemical)
0 (Ferrous Compounds)
تواريخ الأحداث: Date Created: 20230301 Date Completed: 20230424 Latest Revision: 20230424
رمز التحديث: 20231215
DOI: 10.1007/s11356-023-25876-y
PMID: 36854942
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-25876-y