دورية أكاديمية

Plasma Exosome Gene Signature Differentiates Colon Cancer from Healthy Controls.

التفاصيل البيبلوغرافية
العنوان: Plasma Exosome Gene Signature Differentiates Colon Cancer from Healthy Controls.
المؤلفون: Vallejos PA; Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA., Gonda A; Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA., Yu J; Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA., Sullivan BG; Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA., Ostowari A; Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA., Kwong ML; Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA., Choi A; Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA., Selleck MJ; Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA., Kabagwira J; Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA., Fuller RN; Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA., Gironda DJ; Department of Cancer Biology, Wake Forest Health, Winston-Salem, NC, USA., Levine EA; Department of Surgery, Division of Surgical Oncology, Wake Forest Health, Winston-Salem, NC, USA., Hughes CCW; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA., Wall NR; Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA., Miller LD; Department of Cancer Biology, Wake Forest Health, Winston-Salem, NC, USA., Senthil M; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA. maheswas@hs.uci.edu.
المصدر: Annals of surgical oncology [Ann Surg Oncol] 2023 Jun; Vol. 30 (6), pp. 3833-3844. Date of Electronic Publication: 2023 Mar 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9420840 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1534-4681 (Electronic) Linking ISSN: 10689265 NLM ISO Abbreviation: Ann Surg Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : New York, NY : Springer
Original Publication: New York, NY : Raven Press, c1994-
مواضيع طبية MeSH: Exosomes*/genetics , Exosomes*/metabolism , Colonic Neoplasms*/pathology, Humans ; Biomarkers, Tumor/metabolism ; Bayes Theorem ; RNA/metabolism
مستخلص: Background: Liquid biopsies have become an integral part of cancer management as minimally invasive options to detect molecular and genetic changes. However, current options show poor sensitivity in peritoneal carcinomatosis (PC). Novel exosome-based liquid biopsies may provide critical information on these challenging tumors. In this initial feasibility analysis, we identified an exosome gene signature of 445 genes (ExoSig445) from colon cancer patients, including those with PC, that is distinct from healthy controls.
Methods: Plasma exosomes from 42 patients with metastatic and non-metastatic colon cancer and 10 healthy controls were isolated and verified. RNAseq analysis of exosomal RNA was performed and differentially expressed genes (DEGs) were identified by the DESeq2 algorithm. The ability of RNA transcripts to discriminate control and cancer cases was assessed by principal component analysis (PCA) and Bayesian compound covariate predictor classification. An exosomal gene signature was compared with tumor expression profiles of The Cancer Genome Atlas.
Results: Unsupervised PCA using exosomal genes with greatest expression variance showed stark separation between controls and patient samples. Using separate training and test sets, gene classifiers were constructed capable of discriminating control and patient samples with 100% accuracy. Using a stringent statistical threshold, 445 DEGs fully delineated control from cancer samples. Furthermore, 58 of these exosomal DEGs were found to be overexpressed in colon tumors.
Conclusions: Plasma exosomal RNAs can robustly discriminate colon cancer patients, including patients with PC, from healthy controls. ExoSig445 can potentially be developed as a highly sensitive liquid biopsy test in colon cancer.
(© 2023. The Author(s).)
التعليقات: Comment in: Ann Surg Oncol. 2023 Jun;30(6):3845-3846. (PMID: 36856910)
References: National Institutes of Health N. Cacner Stat Facts: Colorectal Cancer. Available at: https://seer.cancer.gov/statfacts/html/colorect.html.
Brouwer NPM, van der Kruijssen DEW, Hugen N, et al. The Impact of primary tumor location in synchronous metastatic colorectal cancer: differences in metastatic sites and survival. Ann Surg Oncol. 2020;27(5):1580–8. https://doi.org/10.1245/s10434-019-08100-5 . (PMID: 10.1245/s10434-019-08100-531792717)
Le VH, Thornblade L, Ituarte PHG, Lai LL, Melstrom KA. Metachronous peritoneal metastases following curative resection for colon cancer: Understanding risk factors and patterns of recurrence. J Surg Oncol. 2021;123(2):622–9. https://doi.org/10.1002/jso.26322 . (PMID: 10.1002/jso.2632233616972)
Leung V, Huang N, Liauw W, Morris DL. High risk features of primary colorectal carcinomas which subsequently undergo peritonectomy. Eur J Surg Oncol. 2016;42(6):836–40. https://doi.org/10.1016/j.ejso.2015.08.161 . (PMID: 10.1016/j.ejso.2015.08.16126995114)
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224RA24. https://doi.org/10.1126/scitranslmed.3007094 . (PMID: 10.1126/scitranslmed.3007094245533854017867)
Sullivan BG, Lo A, Yu J, et al. Circulating tumor DNA is unreliable to detect somatic gene alterations in gastrointestinal peritoneal carcinomatosis. Ann Surg Oncol. 2023;30(1):278–84. https://doi.org/10.1245/s10434-022-12399-y . (PMID: 10.1245/s10434-022-12399-y35980549)
Baumgartner JM, Raymond VM, Lanman RB, et al. Preoperative circulating tumor DNA in patients with peritoneal carcinomatosis is an independent predictor of progression-free survival. Ann Surg Oncol. 2018;25(8):2400–8. https://doi.org/10.1245/s10434-018-6561-z . (PMID: 10.1245/s10434-018-6561-z299484226044413)
Zhang S, Brazel D, Kumar P, et al. Utility of tumor-informed circulating tumor DNA in the clinical management of gastrointestinal malignancies. J Gastrointest Oncol. 2021;12(6):2643–52. https://doi.org/10.21037/jgo-21-484 . (PMID: 10.21037/jgo-21-484350703948748058)
Walker AS, Johnson EK, Maykel JA, et al. Future directions for the early detection of colorectal cancer recurrence. J Cancer. 2014;5(4):272–80. https://doi.org/10.7150/jca.8871 . (PMID: 10.7150/jca.8871247906553982040)
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138 . (PMID: 10.1083/jcb.201211138234208713575529)
Osaki M, Okada F. Exosomes and their role in cancer progression. Yonago Acta Med. 2019;62(2):182–90. https://doi.org/10.33160/yam.2019.06.002 . (PMID: 10.33160/yam.2019.06.002313208226584259)
Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. https://doi.org/10.1038/ncb1800 . (PMID: 10.1038/ncb1800190116223423894)
Hong BS, Cho JH, Kim H, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. 2009;10:556. https://doi.org/10.1186/1471-2164-10-556 . (PMID: 10.1186/1471-2164-10-556199307202788585)
Turay D, Khan S, Diaz Osterman CJ, et al. Proteomic profiling of serum-derived exosomes from ethnically diverse prostate cancer patients. Cancer Invest. 2016;34(1):1–11. https://doi.org/10.3109/07357907.2015.1081921 . (PMID: 10.3109/07357907.2015.108192126536157)
Gonda A, Kabagwira J, Senthil GN, et al. Exosomal survivin facilitates vesicle internalization. Oncotarget. 2018;9(79):34919–34. https://doi.org/10.18632/oncotarget.26182 . (PMID: 10.18632/oncotarget.26182304058846201849)
Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, Wall NR. Survivin is released from cancer cells via exosomes. Apoptosis. 2011;16(1):1–12. https://doi.org/10.1007/s10495-010-0534-4 . (PMID: 10.1007/s10495-010-0534-4207177273174681)
de Necochea-Campion R, Gonda A, Kabagwira J, et al. A practical approach to extracellular vesicle characterization among similar biological samples. Biomed Phys Eng Express. 2018;4:1–8. (PMID: 10.1088/2057-1976/aad6d8)
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923 . (PMID: 10.1038/nmeth.1923223882863322381)
Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80 . (PMID: 10.1186/gb-2004-5-10-r8015461798545600)
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8 . (PMID: 10.1186/s13059-014-0550-8255162814302049)
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70. https://doi.org/10.1093/nar/gkv468 . (PMID: 10.1093/nar/gkv468259694474489295)
Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2003;100(17):9991–6. https://doi.org/10.1073/pnas.1732008100 . (PMID: 10.1073/pnas.173200810012900505187912)
Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 2007;3:11–7. (PMID: 10.1177/117693510700300022194552312675854)
National Cancer Institute. Harmonized Cancer Datasets Genomic Data Commons Data Portal. Updated 31 May 2022. Available at: https://portal.gdc.cancer.gov/.
Tweedie S, Braschi B, Gray K, et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res. 2021;49(1):939–46. https://doi.org/10.1093/nar/gkaa980 . (PMID: 10.1093/nar/gkaa980)
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750 . (PMID: 10.1080/20013078.2018.1535750306370946322352)
Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013. https://doi.org/10.3402/jev.v2i0.19861 . (PMID: 10.3402/jev.v2i0.19861240098963760653)
Cai X, Janku F, Zhan Q, Fan JB. Accessing genetic information with liquid biopsies. Trends Genet. 2015;31(10):564–75. https://doi.org/10.1016/j.tig.2015.06.001 . (PMID: 10.1016/j.tig.2015.06.00126450339)
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65. (PMID: 11245480)
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. https://doi.org/10.1186/s13578-019-0282-2 . (PMID: 10.1186/s13578-019-0282-2308152486377728)
Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43. https://doi.org/10.3892/or.2016.5066 . (PMID: 10.3892/or.2016.5066275997795055211)
Lucchetti D, Zurlo IV, Colella F, et al. Mutational status of plasma exosomal KRAS predicts outcome in patients with metastatic colorectal cancer. Sci Rep. 2021;11(1):22686. https://doi.org/10.1038/s41598-021-01668-7 . (PMID: 10.1038/s41598-021-01668-7348113968608842)
Kabagwira J, Gonda A, Vallejos P, et al. Optimization of blood handling for plasma extracellular vesicle isolation. J Nanopart Res. 2021. https://doi.org/10.1007/s11051-021-05169-6 . (PMID: 10.1007/s11051-021-05169-6)
Nikolaev S, Lemmens L, Koessler T, Blouin JL, Nouspikel T. Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem. 2018;542:34–9. https://doi.org/10.1016/j.ab.2017.11.004 . (PMID: 10.1016/j.ab.2017.11.00429137972)
Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65. https://doi.org/10.1242/jcs.128868 . (PMID: 10.1242/jcs.12886824105262)
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125 . (PMID: 10.1038/nrm.2017.12529339798)
Farris F, Matafora V, Bachi A. The emerging role of β-secretases in cancer. J Exp Clin Cancer Res. 2021;40(1):147. https://doi.org/10.1186/s13046-021-01953-3 . (PMID: 10.1186/s13046-021-01953-3339264968082908)
Wang MC, Li CL, Cui J, et al. BMI-1, a promising therapeutic target for human cancer. Oncol Lett. 2015;10(2):583–8. https://doi.org/10.3892/ol.2015.3361 . (PMID: 10.3892/ol.2015.3361266225374509079)
Jezek J, Wang K, Yan R, Di Cristofano A, Cooper KF, Strich R. Synergistic repression of thyroid hyperplasia by cyclin C and Pten. J Cell Sci. 2019. https://doi.org/10.1242/jcs.230029 . (PMID: 10.1242/jcs.230029313319616737908)
Tang N, Dou X, You X, Shi Q, Ke M, Liu G. Pan-cancer analysis of the oncogenic role of discs large homolog associated protein 5 (DLGAP5) in human tumors. Cancer Cell Int. 2021;21(1):457. https://doi.org/10.1186/s12935-021-02155-9 . (PMID: 10.1186/s12935-021-02155-9344544768399833)
Pascal LE, Su F, Wang D, et al. Conditional deletion of Eaf1 induces murine prostatic intraepithelial neoplasia in mice. Neoplasia. 2019;21(8):752–64. https://doi.org/10.1016/j.neo.2019.05.005 . (PMID: 10.1016/j.neo.2019.05.005312298796593215)
Wang J, Xu J, Li K, et al. Identification of WTAP-related genes by weighted gene co-expression network analysis in ovarian cancer. J Ovarian Res. 2020;13(1):119. https://doi.org/10.1186/s13048-020-00710-y . (PMID: 10.1186/s13048-020-00710-y329987747528330)
Du P, Liu F, Liu Y, Shao M, Li X, Qin G. Linc00210 enhances the malignancy of thyroid cancer cells by modulating miR-195-5p/IGF1R/Akt axis. J Cell Physiol. 2020;235(2):1001–12. https://doi.org/10.1002/jcp.29016 . (PMID: 10.1002/jcp.2901631240707)
Chen X, Gao J, Liang N. DUXAP8 knockdown inhibits the development of melanoma by regulating the miR-3182/NUPR1 pathway. Oncol Lett. 2021;22(1):495. https://doi.org/10.3892/ol.2021.12756 . (PMID: 10.3892/ol.2021.12756339813578108271)
Demetriadou C, Pavlou D, Mpekris F, et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Dis. 2019;10(3):236. https://doi.org/10.1038/s41419-019-1487-3 . (PMID: 10.1038/s41419-019-1487-3308583586411749)
Chen H, Sun X, Ge W, Qian Y, Bai R, Zheng S. A seven-gene signature predicts overall survival of patients with colorectal cancer. Oncotarget. 2017;8(56):95054–65. https://doi.org/10.18632/oncotarget.10982 . (PMID: 10.18632/oncotarget.1098229221110)
Zhang G, Chi N, Lu Q, Zhu D, Zhuang Y. LncRNA PTCSC3 is a biomarker for the treatment and prognosis of gastric cancer. Cancer Biother Radiopharm. 2020;35(1):77–81. https://doi.org/10.1089/cbr.2019.2991 . (PMID: 10.1089/cbr.2019.299131702383)
Zhao Q, Zheng K, Ma C, et al. PTPS facilitates compartmentalized LTBP1 S-nitrosylation and promotes tumor growth under hypoxia. Mol Cell. 2020;77(1):95-107.e5. https://doi.org/10.1016/j.molcel.2019.09.018 . (PMID: 10.1016/j.molcel.2019.09.01831628042)
Ruan Y, Chen W, Gao C, et al. REXO4 acts as a biomarker and promotes hepatocellular carcinoma progression. J Gastrointest Oncol. 2021;12(6):3093–106. https://doi.org/10.21037/jgo-21-819 . (PMID: 10.21037/jgo-21-819350704328748068)
Zhou Z, Gong Q, Wang Y, et al. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res. 2020;8:38. https://doi.org/10.1186/s40364-020-00220-5 . (PMID: 10.1186/s40364-020-00220-5329053467469106)
Liu Q, Li A, Tian Y, et al. The expression profile and clinic significance of the SIX family in non-small cell lung cancer. J Hematol Oncol. 2016;9(1):119. https://doi.org/10.1186/s13045-016-0339-1 . (PMID: 10.1186/s13045-016-0339-1278211765100270)
Chang Q, Xu Y, Wang J, et al. SLC41A3 exhibits as a carcinoma biomarker and promoter in liver hepatocellular carcinoma. Comput Math Methods Med. 2021;2021:8556888. https://doi.org/10.1155/2021/8556888 . (PMID: 10.1155/2021/8556888348199938608493)
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783–803. https://doi.org/10.1016/j.ccell.2016.05.005 . (PMID: 10.1016/j.ccell.2016.05.005273004346186419)
Schwartz DM, Muallem S. Oncogenes calling on a lysosomal Ca(2+) channel. EMBO Rep. 2019. https://doi.org/10.15252/embr.201947953 . (PMID: 10.15252/embr.201947953318332286944914)
Xia P, Zhang H, Xu K, et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 2021;12(7):691. https://doi.org/10.1038/s41419-021-03973-5 . (PMID: 10.1038/s41419-021-03973-5342444798270967)
Yamanoi K, Baba T, Abiko K, et al. Acquisition of a side population fraction augments malignant phenotype in ovarian cancer. Sci Rep. 2019;9(1):14215. https://doi.org/10.1038/s41598-019-50794-w . (PMID: 10.1038/s41598-019-50794-w315784116775117)
Yeh SJ, Chen SW, Chen BS. Investigation of the genome-wide genetic and epigenetic networks for drug discovery based on systems biology approaches in colorectal cancer. Front Genet. 2020;11:117. https://doi.org/10.3389/fgene.2020.00117 . (PMID: 10.3389/fgene.2020.00117322110207068214)
Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 2020;52(3):310–9. https://doi.org/10.1093/abbs/gmz168 . (PMID: 10.1093/abbs/gmz16832147684)
Leenders F, Möpert K, Schmiedeknecht A, et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. Embo J. 2004;23(16):3303–13. https://doi.org/10.1038/sj.emboj.7600345 . (PMID: 10.1038/sj.emboj.760034515282551514518)
Lan J, Guo P, Lin Y, et al. Role of glycosyltransferase PomGnT1 in glioblastoma progression. Neuro Oncol. 2015;17(2):211–22. https://doi.org/10.1093/neuonc/nou151 . (PMID: 10.1093/neuonc/nou15125085363)
Bai TL, Liu YB, Li BH. MiR-411 inhibits gastric cancer proliferation and migration through targeting SETD6. Eur Rev Med Pharmacol Sci. 2019;23(8):3344–50. https://doi.org/10.26355/eurrev_201904_17697 . (PMID: 10.26355/eurrev_201904_1769731081088)
Takagi D, Tatsumi Y, Yokochi T, et al. Novel adaptor protein Shf interacts with ALK receptor and negatively regulates its downstream signals in neuroblastoma. Cancer Sci. 2013;104(5):563–72. https://doi.org/10.1111/cas.12115 . (PMID: 10.1111/cas.12115233604217657181)
Neesse A, Gangeswaran R, Luettges J, et al. Sperm-associated antigen 1 is expressed early in pancreatic tumorigenesis and promotes motility of cancer cells. Oncogene. 2007;26(11):1533–45. https://doi.org/10.1038/sj.onc.1209961 . (PMID: 10.1038/sj.onc.120996116983343)
Du J, Liu X, Wu Y, Zhu J, Tang Y. Essential role of STX6 in esophageal squamous cell carcinoma growth and migration. Biochem Biophys Res Commun. 2016;472(1):60–7. https://doi.org/10.1016/j.bbrc.2016.02.061 . (PMID: 10.1016/j.bbrc.2016.02.06126906622)
Atanackovic D, Blum I, Cao Y, et al. Expression of cancer-testis antigens as possible targets for antigen-specific immunotherapy in head and neck squamous cell carcinoma. Cancer Biol Ther. 2006;5(9):1218–25. https://doi.org/10.4161/cbt.5.9.3174 . (PMID: 10.4161/cbt.5.9.317416929165)
Nirmal AJ, Regan T, Shih BB, Hume DA, Sims AH, Freeman TC. Immune cell gene signatures for profiling the microenvironment of solid tumors. Cancer Immunol Res. 2018;6(11):1388–400. https://doi.org/10.1158/2326-6066.Cir-18-0342 . (PMID: 10.1158/2326-6066.Cir-18-034230266715)
Wang Y, Wang Y, Xu C, Liu Y, Huang Z. Identification of novel tumor-microenvironment-regulating factor that facilitates tumor immune infiltration in colon cancer. Mol Ther Nucleic Acids. 2020;22:236–50. https://doi.org/10.1016/j.omtn.2020.08.029 . (PMID: 10.1016/j.omtn.2020.08.029332304307515980)
Gao C, Shen J, Chen W, et al. Increased RBM12 expression predicts poor prognosis in hepatocellular carcinoma based on bioinformatics. J Gastrointest Oncol. 2021;12(4):1905–26. https://doi.org/10.21037/jgo-21-390 . (PMID: 10.21037/jgo-21-390345321388421916)
Tamang S, Acharya V, Roy D, et al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front Oncol. 2019;9:901. https://doi.org/10.3389/fonc.2019.00901 . (PMID: 10.3389/fonc.2019.00901316203626759952)
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 2020;4(Suppl 3):e000733. https://doi.org/10.1136/esmoopen-2020-000733 . (PMID: 10.1136/esmoopen-2020-000733326115577333812)
Bu P, Chen KY, Xiang K, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 2018;27(6):1249-1262.e4. https://doi.org/10.1016/j.cmet.2018.04.003 . (PMID: 10.1016/j.cmet.2018.04.003297065655990465)
Cairns J, Ly RC, Niu N, Kalari KR, Carlson EE, Wang L. CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer. NAR Cancer. 2020;2(4):ZCAA039. https://doi.org/10.1093/narcan/zcaa039 . (PMID: 10.1093/narcan/zcaa039333851637751685)
Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, et al. Mitochondria “fuel” breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle. 2012;11(23):4390–401. https://doi.org/10.4161/cc.22777 . (PMID: 10.4161/cc.22777231723683552922)
Ray U, Roy D, Jin L, et al. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization. J Exp Clin Cancer Res. 2021;40(1):182. https://doi.org/10.1186/s13046-021-01985-9 . (PMID: 10.1186/s13046-021-01985-9340827978173968)
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 2020;11(3):176. https://doi.org/10.1038/s41419-020-2366-7 . (PMID: 10.1038/s41419-020-2366-7321522757062743)
Zhao Y, Chen P, Lv HJ, et al. Comprehensive analysis of expression and prognostic value of selenoprotein genes in thyroid cancer. Genet Test Mol Biomarkers. 2022;26(4):159–73. https://doi.org/10.1089/gtmb.2021.0123 . (PMID: 10.1089/gtmb.2021.012335481968)
Zhunussova A, Sen B, Friedman L, et al. Tumor microenvironment promotes dicarboxylic acid carrier-mediated transport of succinate to fuel prostate cancer mitochondria. Am J Cancer Res. 2015;5(5):1665–79. (PMID: 261759364497434)
Youn CK, Lee JH, Hariharasudhan G, et al. HspBP1 is a dual function regulatory protein that controls both DNA repair and apoptosis in breast cancer cells. Cell Death Dis. 2022;13(4):309. https://doi.org/10.1038/s41419-022-04766-0 . (PMID: 10.1038/s41419-022-04766-0353879788986865)
Xie J, Cheng CS, Zhu XY, et al. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging (Albany NY). 2019;11(9):2681–98. https://doi.org/10.18632/aging.101940 . (PMID: 10.18632/aging.101940310765596535063)
معلومات مُعتمدة: Grants to promote Collaborative Loma Linda University; Translational Loma Linda University
المشرفين على المادة: 0 (Biomarkers, Tumor)
63231-63-0 (RNA)
تواريخ الأحداث: Date Created: 20230302 Date Completed: 20230515 Latest Revision: 20230525
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10175396
DOI: 10.1245/s10434-023-13219-7
PMID: 36864326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1534-4681
DOI:10.1245/s10434-023-13219-7