دورية أكاديمية

Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress.

التفاصيل البيبلوغرافية
العنوان: Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress.
المؤلفون: Yao XC; School of Life Sciences, Ningxia University, Yinchuan, China., Meng LF; School of Life Sciences, Ningxia University, Yinchuan, China., Zhao WL; School of Life Sciences, Ningxia University, Yinchuan, China., Mao GL; School of Life Sciences, Ningxia University, Yinchuan, China.
المصدر: Frontiers in plant science [Front Plant Sci] 2023 Feb 20; Vol. 14, pp. 1090366. Date of Electronic Publication: 2023 Feb 20 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: Salt stress directly affects the growth of plants. The limitation of leaf grow is among the earliest visible effects of salt stress. However, the regulation mechanism of salt treatments on leaf shape has not been fully elucidated. We measured the morphological traits and anatomical structure. In combination with transcriptome analysis, we analyzed differentially expressed genes (DEGs) and verified the RNA-seq data by qRT-PCR. Finally, we analyzed correlation between leaf microstructure parameters and expansin genes. We show that the leaf thickness, the width, and the leaf length significantly increased at elevated salt concentrations after salt stress for 7 days. Low salt mainly promoted the increase in leaves length and width, but high salt concentration accelerated the leaf thickness. The anatomical structure results indicated that palisade mesophyll tissues contribute more to leaf thickness than spongy mesophyll tissues, which possibly contributed to the increase in leaf expansion and thickness. Moreover, a total of 3,572 DEGs were identified by RNA-seq. Notably, six of the DEGs among 92 identified genes concentrated on cell wall synthesis or modification were involved in cell wall loosening proteins. More importantly, we demonstrated that there was a strong positive correlation between the upregulated EXLA2 gene and the thickness of the palisade tissue in L. barbarum leaves. These results suggested that salt stress possibly induced the expression of EXLA2 gene, which in turn increased the thickness of L. barbarum leaves by promoting the longitudinal expansion of cells of the palisade tissue. This study lays a solid knowledge for revealing the underlying molecular mechanisms of leaf thickening in L. barbarum in response to salt stresses.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Yao, Meng, Zhao and Mao.)
References: Curr Biol. 2017 Sep 11;27(17):R865-R870. (PMID: 28898654)
Front Plant Sci. 2021 Mar 11;12:643555. (PMID: 33777078)
Plant Physiol. 2018 Jan;176(1):16-27. (PMID: 29138349)
Plant Physiol Biochem. 2021 Jun;163:166-177. (PMID: 33848929)
Plant Physiol. 1970 Aug;46(2):250-3. (PMID: 16657445)
Protoplasma. 2023 Mar;260(2):509-527. (PMID: 35804193)
J Exp Bot. 2014 Dec;65(22):6385-97. (PMID: 25205574)
Phytochemistry. 2021 Jan;181:112582. (PMID: 33246307)
Genome Biol. 2005;6(12):242. (PMID: 16356276)
Plant Cell Environ. 2012 Mar;35(3):578-87. (PMID: 21954856)
Plant Cell Environ. 2018 Nov;41(11):2654-2667. (PMID: 29956332)
Plant Cell Environ. 2022 Oct;45(10):2987-3000. (PMID: 35864569)
Plant Signal Behav. 2011 May;6(5):740-2. (PMID: 21593593)
Crit Rev Biotechnol. 2015;35(4):425-37. (PMID: 24738851)
Phytochemistry. 2022 Jul;199:113178. (PMID: 35385712)
Plant Physiol Biochem. 2020 Feb;147:43-53. (PMID: 31841961)
BMC Plant Biol. 2022 Aug 4;22(1):390. (PMID: 35922748)
Plant Physiol Biochem. 2020 Sep;154:581-589. (PMID: 32711363)
Genes (Basel). 2021 Feb 10;12(2):. (PMID: 33578704)
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112):. (PMID: 29277745)
Plant Physiol. 2001 Mar;125(3):1419-28. (PMID: 11244121)
J Plant Physiol. 2015 Sep 1;188:96-105. (PMID: 26476190)
New Phytol. 2013 Mar;197(4):1117-1129. (PMID: 23176077)
Mol Plant Pathol. 2013 Oct;14(8):813-27. (PMID: 23782466)
Plant Cell Rep. 2016 May;35(5):949-65. (PMID: 26888755)
Plant Physiol Biochem. 2020 Jun;151:477-485. (PMID: 32299052)
Trends Plant Sci. 2012 Jun;17(6):332-40. (PMID: 22401845)
Plants (Basel). 2021 Oct 18;10(10):. (PMID: 34686017)
J Plant Physiol. 2014 Feb 15;171(3-4):235-42. (PMID: 23988561)
Plant Physiol. 2001 Oct;127(2):645-54. (PMID: 11598238)
Front Genet. 2019 Mar 29;10:247. (PMID: 30984239)
Planta. 2015 Oct;242(4):829-46. (PMID: 25976265)
Plant Cell Physiol. 2018 Nov 1;59(11):2317-2330. (PMID: 30124953)
PLoS One. 2018 Jan 11;13(1):e0191081. (PMID: 29324804)
J Plant Physiol. 2015 Jul 1;183:41-51. (PMID: 26074356)
Planta. 2021 Jul 03;254(2):21. (PMID: 34216276)
Int J Mol Sci. 2021 Apr 28;22(9):. (PMID: 33924753)
Methods Mol Biol. 2018;1744:313-319. (PMID: 29392676)
Plant Physiol. 1979 Apr;63(4):700-3. (PMID: 16660795)
Genetica. 2021 Dec;149(5-6):283-297. (PMID: 34643833)
Plant Physiol. 2002 Sep;130(1):47-57. (PMID: 12226485)
Plant Cell Rep. 2020 Oct;39(10):1301-1316. (PMID: 32648011)
Int J Mol Sci. 2021 Feb 26;22(5):. (PMID: 33652568)
Plant Physiol. 2018 May;177(1):151-167. (PMID: 29523715)
Plant Physiol. 2017 Feb;173(2):1453-1462. (PMID: 27999086)
فهرسة مساهمة: Keywords: Lycium barbarum L.; expansin; leaf thickness; salt stress; transcriptome
تواريخ الأحداث: Date Created: 20230309 Latest Revision: 20230310
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9987590
DOI: 10.3389/fpls.2023.1090366
PMID: 36890891
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2023.1090366