دورية أكاديمية

A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies.

التفاصيل البيبلوغرافية
العنوان: A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies.
المؤلفون: Rosales SM; The University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, FL, USA. Stephanie.Rosales@noaa.gov.; National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA. Stephanie.Rosales@noaa.gov., Huebner LK; Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA., Evans JS; U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA., Apprill A; Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, USA., Baker AC; The University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA., Becker CC; Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, USA., Bellantuono AJ; Florida International University, Department of Biological Sciences, Miami, FL, USA., Brandt ME; The University of the Virgin Islands, Center for Marine and Environmental Studies, St. Thomas, VI, USA., Clark AS; The College of the Florida Keys, Marine Science and Technology, Key West, FL, USA.; Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA., Del Campo J; Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra)-Barcelona, Barcelona, Spain., Dennison CE; The University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA., Eaton KR; The University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, FL, USA.; National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA.; Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA., Huntley NE; The Pennsylvania State University, Biology Department, University Park, PA, USA., Kellogg CA; U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA., Medina M; The Pennsylvania State University, Biology Department, University Park, PA, USA., Meyer JL; University of Florida, Soil, Water, and Ecosystem Sciences Department, Gainesville, FL, USA., Muller EM; Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA., Rodriguez-Lanetty M; Florida International University, Department of Biological Sciences, Miami, FL, USA., Salerno JL; George Mason University, Potomac Environmental Research and Education Center, Department of Environmental Science and Policy, Woodbridge, VA, USA., Schill WB; U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, USA., Shilling EN; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA., Stewart JM; The Pennsylvania State University, Biology Department, University Park, PA, USA., Voss JD; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.
المصدر: ISME communications [ISME Commun] 2023 Mar 09; Vol. 3 (1), pp. 19. Date of Electronic Publication: 2023 Mar 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 9918205372406676 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-6151 (Electronic) Linking ISSN: 27306151 NLM ISO Abbreviation: ISME Commun Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 3 2024- : Oxford : Oxford University Press
Original Publication: [London] : Springer Nature on behalf of the International Society for Microbial Ecology, [2021]-
مستخلص: Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.
(© 2023. The Author(s).)
References: Landsberg JH, Kiryu Y, Peters EC, Wilson PW, Perry N, Waters Y, et al. Stony coral tissue loss disease in Florida is associated with disruption of host—Zooxanthellae physiology. Front Mar Sci. 2020;7:576013. https://doi.org/10.3389/fmars.2020.576013 . (PMID: 10.3389/fmars.2020.576013.)
Case definition: stony coral tissue loss disease (SCTLD). https://floridadep.gov/sites/default/files/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf . Accessed 12 July, 2022.
Precht WF, Gintert BE, Robbart ML, Fura R, van Woesik R. Unprecedented disease-related coral mortality in southeastern Florida. Sci Rep. 2016;6. https://doi.org/10.1038/srep31374 .
Miller M, Karazsia J, Groves CE, Griffin S, Moore T, Wilber P, et al. Detecting sedimentation impacts to coral reefs resulting from dredging the port of Miami, Florida USA. PeerJ. 2016;4:e2711. https://doi.org/10.7717/peerj.2711. (PMID: 10.7717/peerj.2711.278960365119242)
Walton CJ, Hayes NK, Gilliam DS. Impacts of a regional, multi-year, multi-species coral disease outbreak in southeast Florida. Front Mar Sci. 2018;5. https://doi.org/10.3389/fmars.2018.00323 .
Gintert BE, Precht WF, Fura R, Rogers K, Rice M, Precht LL, et al. Regional coral disease outbreak overwhelms impacts from a local dredge project. Environ Monitor Assess. 2019;191. https://doi.org/10.1007/s10661-019-7767-7 .
Alvarez-Filip L, Estrada-Saldívar N, Pérez-Cervantes E, Molina-Hernández A, González-Barrios FJ. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ. 2019;7:e8069. https://doi.org/10.7717/peerj.8069. (PMID: 10.7717/peerj.8069.317883556883952)
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol. 2022;5:440. https://doi.org/10.1038/s42003-022-03398-6. (PMID: 10.1038/s42003-022-03398-6.356810379184636)
Williams SD, Walter CS, Muller EM. Fine scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida keys. Front Mar Sci. 2021;8:631776. https://doi.org/10.3389/fmars.2021.631776. (PMID: 10.3389/fmars.2021.631776.)
Hayes NK, Walton CJ, Gilliam DS. Tissue loss disease outbreak significantly alters the Southeast Florida stony coral assemblage. Front Mar Sci. 2022;9:975894. https://doi.org/10.3389/fmars.2022.975894. (PMID: 10.3389/fmars.2022.975894.)
Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.00681 .
Studivan MS, Rossin AM, Rubin E, Soderberg N, Holstein DM, Enochs IC. Reef sediments can act as a stony coral tissue loss disease vector. Front Mar Sci. 2022;8:815698. https://doi.org/10.3389/fmars.2021.815698. (PMID: 10.3389/fmars.2021.815698.)
Work TM, Weatherby TM, Landsberg JH, Kiryu Y, Cook SM, Peters EC. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar Sci. 2021;8:750658. https://doi.org/10.3389/fmars.2021.750658. (PMID: 10.3389/fmars.2021.750658.)
Veglia AJ, Beavers K, Van Buren EW, Meiling SS, Muller EM, Smith TB, et al. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiol Resour Announc. 2022;11:e01199-21. https://doi.org/10.1128/mra.01199-21 .
Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida reef tract. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.02244 .
Huntley N, Brandt ME, Becker CC, Miller CA, Meiling SS, Correa AMS, et al. Experimental transmission of stony coral tissue loss disease results in differential microbial responses within coral mucus and tissue. ISME Commun. 2022;2:46. https://doi.org/10.1038/s43705-022-00126-3. (PMID: 10.1038/s43705-022-00126-3.9723713)
Muller EM, Sartor C, Alcaraz NI, van Woesik R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar Sci. 2020;7:163. https://doi.org/10.3389/fmars.2020.00163. (PMID: 10.3389/fmars.2020.00163.)
Meiling S, Muller EM, Smith TB, Brandt ME. 3D photogrammetry reveals dynamics of stony coral tissue loss disease (SCTLD) lesion progression across a thermal stress event. Front Mar Sci. 2020;7:597643. https://doi.org/10.3389/fmars.2020.597643. (PMID: 10.3389/fmars.2020.597643.)
Aeby GS, Ushijima B, Campbell JE, Jones S, Williams GJ, Meyer JL, et al. Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida reef tract. Front Mar Sci. 2019;6. https://doi.org/10.3389/fmars.2019.00678 .
Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar Sci. 2020;7:591881. https://doi.org/10.3389/fmars.2020.591881. (PMID: 10.3389/fmars.2020.591881.)
Eaton KR, Landsberg JH, Kiryu Y, Peters EC, Muller EM. Measuring stony coral tissue loss disease induction and lesion progression within two intermediately susceptible species, Montastraea cavernosa and Orbicella faveolata. Front Mar Sci. 2021;8:717265. https://doi.org/10.3389/fmars.2021.717265. (PMID: 10.3389/fmars.2021.717265.)
Rosales SM, Huebner LK, Clark AS, McMinds R, Ruzicka RR, Muller EM. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front Mar Sci. 2022;8:776859. https://doi.org/10.3389/fmars.2021.776859. (PMID: 10.3389/fmars.2021.776859.)
Iwanowicz DD, Schill WB, Woodley CM, Bruckner A, Neely K, Briggs KM. Exploring the stony coral tissue loss disease bacterial pathobiome. 2020. https://doi.org/10.1101/2020.05.27.120469 . Accessed 22 October 2020.
Thome PE, Rivera-Ortega J, Rodríguez-Villalobos JC, Cerqueda-García D, Guzmán-Urieta EO, García-Maldonado JQ, et al. Local dynamics of a white syndrome outbreak and changes in the microbial community associated with colonies of the scleractinian brain coral Pseudodiploria strigosa. PeerJ. 2021;9:e10695. https://doi.org/10.7717/peerj.10695. (PMID: 10.7717/peerj.10695.336041727863780)
Becker CC, Brandt M, Miller CA, Apprill A. Microbial bioindicators of stony coral tissue loss disease identified in corals and overlying waters using a rapid field‐based sequencing approach. Environ Microbiol. 2021;1462-2920:15718 https://doi.org/10.1111/1462-2920.15718. (PMID: 10.1111/1462-2920.15718.)
Clark AS, Williams SD, Maxwell K, Rosales SM, Huebner LK, Landsberg JH, et al. Characterization of the microbiome of corals with stony coral tissue loss disease along Florida’s coral reef. Microorganisms. 2021;9:2181. https://doi.org/10.3390/microorganisms9112181. (PMID: 10.3390/microorganisms9112181.348353068623284)
Evans JS, Paul VJ, Ushijima B, Kellogg CA. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol Methods Protoc. 2022;7:bpac007. https://doi.org/10.1093/biomethods/bpac007. (PMID: 10.1093/biomethods/bpac007.351872658848328)
Neely KL, Macaulay KA, Hower EK, Dobler MA. Effectiveness of topical antibiotics in treating corals affected by stony coral tissue loss disease. PeerJ. 2020;8:e9289. https://doi.org/10.7717/peerj.9289. (PMID: 10.7717/peerj.9289.325512007292019)
Walker BK, Turner NR, Noren HKG, Buckley SF, Pitts KA. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an endemic zone. Front Mar Sci. 2021;8:666224. https://doi.org/10.3389/fmars.2021.666224. (PMID: 10.3389/fmars.2021.666224.)
The Microbiome Quality Control Project Consortium, Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat Biotechnol. 2017;35:1077–86. https://doi.org/10.1038/nbt.3981. (PMID: 10.1038/nbt.3981.5839636)
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22. https://doi.org/10.1073/pnas.1000080107. (PMID: 10.1073/pnas.1000080107.20534432)
Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLOS ONE. 2015;10:e0128122. https://doi.org/10.1371/journal.pone.0128122 .
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies. Environ Microbiol. 2016;18:1403–14. https://doi.org/10.1111/1462-2920.13023. (PMID: 10.1111/1462-2920.13023.26271760)
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecol. 2015;75:129–37. https://doi.org/10.3354/ame01753. (PMID: 10.3354/ame01753.)
Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9. https://doi.org/10.1038/ismej.2011.41. (PMID: 10.1038/ismej.2011.41.214720163176514)
Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72. https://doi.org/10.1128/AEM.66.11.5066-5072.2000. (PMID: 10.1128/AEM.66.11.5066-5072.2000.1105596492420)
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. https://doi.org/10.1186/s12915-014-0087-z. (PMID: 10.1186/s12915-014-0087-z.253874604228153)
Borgatti SP. Identifying sets of key players in a social network. Comput Math Organ Theory. 2006;12:21–34. https://doi.org/10.1007/s10588-006-7084-x. (PMID: 10.1007/s10588-006-7084-x.)
McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4. https://doi.org/10.3389/fmars.2017.00262 .
Galand PE, Chapron L, Meistertzheim AL, Peru E, Lartaud F. The effect of captivity on the dynamics of active bacterial communities differs between two deep-sea coral species. Front Microbiol. 2018;9:2565. https://doi.org/10.3389/fmicb.2018.02565. (PMID: 10.3389/fmicb.2018.02565.304208446215855)
Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol. 2008;74:52–60. https://doi.org/10.1128/AEM.01400-07. (PMID: 10.1128/AEM.01400-07.17965206)
Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL, et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ. 2017;5:e3315. https://doi.org/10.7717/peerj.3315. (PMID: 10.7717/peerj.3315.285847015455293)
Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature. 2008;452:741–4. https://doi.org/10.1038/nature06776. (PMID: 10.1038/nature06776.18337719)
Raina JB, Dinsdale EA, Willis BL, Bourne DG. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trend Microbiol. 2010;18:101–8. https://doi.org/10.1016/j.tim.2009.12.002. (PMID: 10.1016/j.tim.2009.12.002.)
Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007. https://doi.org/10.1038/ismej.2013.210. (PMID: 10.1038/ismej.2013.210.24335830)
Shilling EN, Combs IR, Voss JD. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci Rep. 2021;11:8566. https://doi.org/10.1038/s41598-021-86926-4. (PMID: 10.1038/s41598-021-86926-4.338835818060409)
McNally SP, Parsons RJ, Santoro AE, Apprill A. Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnol Oceanogr. 2017;62:217–34. https://doi.org/10.1002/lno.10389. (PMID: 10.1002/lno.10389.)
Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Grosso O, et al. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. ISME J. 2019;13:2882–6. https://doi.org/10.1038/s41396-019-0456-2. (PMID: 10.1038/s41396-019-0456-2.312493896794269)
Hoadley KD, Hamilton M, Poirier CL, Choi CJ, Yung CM, Worden AZ. Selective uptake of pelagic microbial community members by Caribbean reef corals. App Environ Microbiol. 2021;87:e03175-20. https://doi.org/10.1128/AEM.03175-20 .
Hadaidi G, Ziegler M, Shore-Maggio A, Jensen T, Aeby G, Voolstra CR. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ. 2018;6:e5169. https://doi.org/10.7717/peerj.5169. (PMID: 10.7717/peerj.5169.300138396046197)
de Castro AP, Araújo SD, Reis AMM, Moura RL, Francini-Filho RB, Pappas G, et al. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Microbial Ecol. 2010;59:658–67. https://doi.org/10.1007/s00248-010-9646-1. (PMID: 10.1007/s00248-010-9646-1.)
Dürre P. Clostridia. eLS. 2015; 1–11. https://doi.org/10.1002/9780470015902.a0020370.pub2.
Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 439–512.
Pohlner M, Dlugosch L, Wemheuer B, Mills H, Engelen B, Reese BK. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: a molecular approach to link their distribution to environmental conditions. Front Microbiol. 2019;10:659. https://doi.org/10.3389/fmicb.2019.00659. (PMID: 10.3389/fmicb.2019.00659.310012326454203)
Carlton RG, Richardson LL. Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol. 1995;18:155–62. https://doi.org/10.1111/j.1574-6941.1995.tb00173.x. (PMID: 10.1111/j.1574-6941.1995.tb00173.x.)
Hughes DJ, Raina JB, Nielsen DA, Suggett DJ, Kühl M. Disentangling compartment functions in sessile marine invertebrates. Trends Ecol Evol. 2022;S016953472200091X. https://doi.org/10.1016/j.tree.2022.04.008 .
Cárdenas A, Neave MJ, Haroon MF, Pogoreutz C, Rädecker N, Wild C, et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 2018;12:59–76. https://doi.org/10.1038/ismej.2017.142. (PMID: 10.1038/ismej.2017.142.28895945)
Urbina P, Collado MI, Alonso A, Goñi FM, Flores-Díaz M, Alape-Girón A, et al. Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2011;1808:2618–27. https://doi.org/10.1016/j.bbamem.2011.06.008. (PMID: 10.1016/j.bbamem.2011.06.008.21704605)
Anwar Z, Regan SB, Linden J. Enrichment and detection of Clostridium perfringens toxinotypes in retail food samples. J Vis Exp. 2019:59931. https://doi.org/10.3791/59931 .
Chen Y, McClane BA, Fisher DJ, Rood JI, Gupta P. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol. 2005;71:7542–7. https://doi.org/10.1128/AEM.71.11.7542-7547.2005. (PMID: 10.1128/AEM.71.11.7542-7547.2005.162697991287605)
Rosales SM, Miller MW, Williams DE, Traylor-Knowles N, Young B, Serrano XM. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-54855-y .
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ. 2018; https://doi.org/10.7287/peerj.preprints.27295v2 .
Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T, et al. QIIME 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinform. 2020;70. https://doi.org/10.1002/cpbi.100 .
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10. https://doi.org/10.14806/ej.17.1.200. (PMID: 10.14806/ej.17.1.200.)
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869. (PMID: 10.1038/nmeth.3869.272140474927377)
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584 https://doi.org/10.7717/peerj.2584. (PMID: 10.7717/peerj.2584.277811705075697)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. https://doi.org/10.1093/nar/gks1219. (PMID: 10.1093/nar/gks1219.231932833531112)
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67. https://doi.org/10.18637/jss.v067.i01 .
Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: an alternative to least squares means. Am Stat. 1980;34:216–21. https://doi.org/10.1080/00031305.1980.10483031. (PMID: 10.1080/00031305.1980.10483031.)
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217 .
Lahti L, Shetty S. Tools for microbiome analysis in R. Microbiome package version. Bioconductor; 2017. http://microbiome.github.io/microbiome .
Dixon P. VEGAN, a package of R functions for community ecology. J Veget Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x. (PMID: 10.1111/j.1654-1103.2003.tb02228.x.)
Martinez A. pairwiseAdonis: pairwise multilevel comparison using adonis. 2019. https://github.com/pmartinezarbizu/pairwiseAdonis .
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4:e00016-19. https://doi.org/10.1128/mSystems.00016-19 .
Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-020-17041-7 .
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559 https://doi.org/10.1186/1471-2105-9-559. (PMID: 10.1186/1471-2105-9-559.)
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput Biol. 2015;11:e1004226. https://doi.org/10.1371/journal.pcbi.1004226 .
Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Annal Stat. 2006;34:1436–62. https://doi.org/10.1214/009053606000000281. (PMID: 10.1214/009053606000000281.)
Thomas LP. A tidy API for graph manipulation. 2019. https://github.com/thomasp85/tidygraph.
Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77. https://doi.org/10.1080/0022250X.2001.9990249. (PMID: 10.1080/0022250X.2001.9990249.)
Simon J. influenceR: software tools to quantify structural importance of nodes in a network. 2015. https://github.com/rcc-uchicago/influenceR.
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8. https://doi.org/10.1038/s41587-020-0548-6. (PMID: 10.1038/s41587-020-0548-6.324833667365738)
Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27. (PMID: 10.1093/nar/28.1.27.10592173102409)
Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 2020;48:D445–53. https://doi.org/10.1093/nar/gkz862. (PMID: 10.1093/nar/gkz862.31586394)
Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021;17:e1009442. https://doi.org/10.1371/journal.pcbi.1009442 .
تواريخ الأحداث: Date Created: 20230309 Latest Revision: 20231108
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9998881
DOI: 10.1038/s43705-023-00220-0
PMID: 36894742
قاعدة البيانات: MEDLINE
الوصف
تدمد:2730-6151
DOI:10.1038/s43705-023-00220-0