دورية أكاديمية

Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes.

التفاصيل البيبلوغرافية
العنوان: Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes.
المؤلفون: Silveira-Rodrigues JG; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.; Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Campos BT; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., de Lima AT; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Ogando PHM; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.; Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Gomes CB; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Gomes PF; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Aleixo IMS; Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil., Soares DD; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. danusa56@gmail.com.
المصدر: Experimental brain research [Exp Brain Res] 2023 Apr; Vol. 241 (4), pp. 1173-1183. Date of Electronic Publication: 2023 Mar 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/therapy , Resistance Training*, Male ; Middle Aged ; Humans ; Female ; Aged ; Brain-Derived Neurotrophic Factor ; Reaction Time ; Exercise/physiology
مستخلص: Impairments in several domains of cognitive functions are observed in people with Type 2 Diabetes Mellitus (T2DM), often accompanied by low Brain-derived neurotrophic factor (BDNF) concentrations. Although aerobic and resistance exercise enhances cognitive functions and raises BDNF concentrations in several populations, it remained uncertain in T2DM subjects. This study compared the effects of a single bout of aerobic (AER, 40 min of treadmill walk at 90-95% of the maximum walk speed) or resistance (RES, 3 × 10 repetitions in eight exercises at 70% of 10-RM) exercise on specific cognitive domain performance and plasma BDNF concentrations of physically active T2DM subjects. Eleven T2DM subjects (9 women/2 men; 63 ± 7 years) performed two counterbalanced trials on non-consecutive days. Stroop Color and Word (SCW) task [assessing the attention (congruent condition) and inhibitory control (incongruent condition)], Visual response time (assessing the response time), and blood collection (for plasma BDNF concentrations) were performed pre and post-exercise sessions. With distinct magnitude, both AER and RES improved the incongruent-SCW (d = - 0.26 vs. - 0.43 in AER and RES, respectively; p < 0.05), RT (best) (d = - 0.31 vs. - 0.52, p < 0.05), and RT (1-5) (d = - 0.64 vs. - 0.21, p < 0.05). The congruent-SCW and RT (6-10) were not statistically different. Plasma BDNF concentrations were elevated 11% in AER (d = 0.30) but decreased by 15% in RES (d = - 0.43). A single session of aerobic or resistance exercise similarly improved the inhibitory control and response time of physically active T2DM subjects. Nevertheless, aerobic and resistance exercise sessions induced an opposite clinical effect in plasma BDNF concentrations.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc 32:S498–S516. https://doi.org/10.1097/00005768-200009001-00009. (PMID: 10.1097/00005768-200009001-00009)
Alves CRR, Gualano B, Takao PP et al (2012) Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. J Sport Exerc Psychol 34:539–549. https://doi.org/10.1123/jsep.34.4.539. (PMID: 10.1123/jsep.34.4.53922889693)
Antunes BM, Rossi FE, Teixeira AM, Lira FS (2020) Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. Eur J Sport Sci 20:43–50. https://doi.org/10.1080/17461391.2019.1611929. (PMID: 10.1080/17461391.2019.161192931057094)
Apolinario D, dos Santos MF, Sassaki E et al (2018) Normative data for the Montreal Cognitive Assessment (MoCA) and the Memory Index Score (MoCA-MIS) in Brazil: adjusting the nonlinear effects of education with fractional polynomials. Int J Geriatr Psychiatry 33:893–899. https://doi.org/10.1002/gps.4866. (PMID: 10.1002/gps.486629430766)
Bacchi E, Negri C, Zanolin ME et al (2012) Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 35:676–682. https://doi.org/10.2337/dc11-1655. (PMID: 10.2337/dc11-1655223446133308269)
Baechle, Thomas R, Earle, Roger W (2008) Essentials of strength training and conditioning. Human Kinetics.
Balducci S, Zanuso S, Nicolucci A et al (2010) Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis 20:608–617. https://doi.org/10.1016/j.numecd.2009.04.015. (PMID: 10.1016/j.numecd.2009.04.01519695853)
Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14:591–604. https://doi.org/10.1038/s41574-018-0048-7. (PMID: 10.1038/s41574-018-0048-7300220996397437)
Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics Publishers Inc.
Brinkmann C, Schäfer L, Masoud M et al (2017) Effects of cycling and exergaming on neurotrophic factors in elderly type 2 diabetic men—a preliminary investigation. Exp Clin Endocrinol Diabetes 125:436–440. https://doi.org/10.1055/s-0043-103967. (PMID: 10.1055/s-0043-10396728444660)
Cassilhas RC, Lee KS, Fernandes J et al (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029. (PMID: 10.1016/j.neuroscience.2011.11.02922155655)
Chang Y-K, Etnier JL (2009) Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol 31:640–656. https://doi.org/10.1123/jsep.31.5.640. (PMID: 10.1123/jsep.31.5.64020016113)
Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101. https://doi.org/10.1016/j.brainres.2012.02.068. (PMID: 10.1016/j.brainres.2012.02.06822480735)
Chang YK, Tsai CL, Huang CC et al (2014) Effects of acute resistance exercise on cognition in late middle-aged adults: general or specific cognitive improvement? J Sci Med Sport 17:51–55. https://doi.org/10.1016/j.jsams.2013.02.007. (PMID: 10.1016/j.jsams.2013.02.00723491140)
Chen F-T, Etnier JL, Chan K-H et al (2020) Effects of exercise training interventions on executive function in older adults: a systematic review and meta-analysis. Sport Med 50:1451–1467. https://doi.org/10.1007/s40279-020-01292-x. (PMID: 10.1007/s40279-020-01292-x)
Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42:484–491. https://doi.org/10.1111/j.1445-5994.2012.02758.x. (PMID: 10.1111/j.1445-5994.2012.02758.x22372522)
Cherbuin N, Walsh EI (2019) Sugar in mind: untangling a sweet and sour relationship beyond type 2 diabetes. Front Neuroendocrinol 54:100769. https://doi.org/10.1016/j.yfrne.2019.100769. (PMID: 10.1016/j.yfrne.2019.10076931176793)
Chu C-H, Chen A-G, Hung T-M et al (2015) Exercise and fitness modulate cognitive function in older adults. Psychol Aging 30:842–848. https://doi.org/10.1037/pag0000047. (PMID: 10.1037/pag000004726652724)
Dinoff A, Herrmann N, Swardfager W et al (2016) The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One 11:e0163037. https://doi.org/10.1371/journal.pone.0163037. (PMID: 10.1371/journal.pone.0163037276582385033477)
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46:1635–1646. https://doi.org/10.1111/ejn.13603. (PMID: 10.1111/ejn.1360328493624)
Feil DG, Zhu CW, Sultzer DL (2012) The relationship between cognitive impairment and diabetes self-management in a population-based community sample of older adults with type 2 diabetes. J Behav Med 35:190–199. https://doi.org/10.1007/s10865-011-9344-6. (PMID: 10.1007/s10865-011-9344-621503710)
Figueiredo C, Antunes BM, Giacon TR et al (2019) Influence of acute and chronic high-intensity intermittent aerobic plus strength exercise on BDNF, lipid and autonomic parameters. J Sports Sci Med 18:359–368. (PMID: 311911076544002)
Formenti D, Cavaggioni L, Duca M et al (2020) Acute effect of exercise on cognitive performance in middle-aged adults: aerobic versus balance. J Phys Act Health 17:773–780. https://doi.org/10.1123/jpah.2020-0005. (PMID: 10.1123/jpah.2020-0005)
Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141:2–18. https://doi.org/10.1037/a0024338. (PMID: 10.1037/a002433821823805)
Gao Y, Xiao Y, Miao R et al (2016) The prevalence of mild cognitive impairment with type 2 diabetes mellitus among elderly people in China: a cross-sectional study. Arch Gerontol Geriatr 62:138–142. https://doi.org/10.1016/j.archger.2015.09.003. (PMID: 10.1016/j.archger.2015.09.00326381432)
Gearhart RF, Lagally KM, Riechman SE et al (2009) Strength tracking ssing the OMNI resistance exercise scale in older men and women. J Strength Cond Res 23:1011–1015. https://doi.org/10.1519/JSC.0b013e3181a2ec41. (PMID: 10.1519/JSC.0b013e3181a2ec4119387373)
Geroldi D, Minoretti P, Emanuele E (2006) Brain-derived neurotrophic factor and the metabolic syndrome: more than just a hypothesis. Med Hypotheses 67:195–196. https://doi.org/10.1016/j.mehy.2006.02.001. (PMID: 10.1016/j.mehy.2006.02.00116545915)
Goekint M, De Pauw K, Roelands B et al (2010) Strength training does not influence serum brain-derived neurotrophic factor. Eur J Appl Physiol 110:285–293. https://doi.org/10.1007/s00421-010-1461-3. (PMID: 10.1007/s00421-010-1461-320467874)
Hristova MG (2013) Metabolic syndrome—from the neurotrophic hypothesis to a theory. Med Hypotheses 81:627–634. https://doi.org/10.1016/j.mehy.2013.07.018. (PMID: 10.1016/j.mehy.2013.07.01823899630)
Hyodo K, Dan I, Suwabe K et al (2012) Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiol Aging 33:2621–2632. https://doi.org/10.1016/j.neurobiolaging.2011.12.022. (PMID: 10.1016/j.neurobiolaging.2011.12.02222300952)
Intlekofer KA, Berchtold NC, Malvaez M et al (2013) Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38:2027–2034. https://doi.org/10.1038/npp.2013.104. (PMID: 10.1038/npp.2013.104236156643746687)
Johnson L, Addamo PK, Selva Raj I et al (2016) An acute bout of exercise improves the cognitive performance of older adults. J Aging Phys Act 24:591–598. https://doi.org/10.1123/japa.2015-0097. (PMID: 10.1123/japa.2015-009726964644)
Kanaley JA, Colberg SR, Corcoran MH et al (2022) Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American college of sports medicine. Med Sci Sport Exerc 54:353–368. https://doi.org/10.1249/MSS.0000000000002800. (PMID: 10.1249/MSS.0000000000002800)
Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sport Med 40:765–801. https://doi.org/10.2165/11534530-000000000-00000. (PMID: 10.2165/11534530-000000000-00000)
Krabbe KS, Nielsen AR, Krogh-Madsen R et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438. https://doi.org/10.1007/s00125-006-0537-4. (PMID: 10.1007/s00125-006-0537-417151862)
Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24. https://doi.org/10.1016/j.brainres.2010.03.091. (PMID: 10.1016/j.brainres.2010.03.09120381468)
Marston KJ, Brown BM, Rainey-Smith SR et al (2020) An intense, but ecologically valid, resistance exercise session does not alter growth factors associated with cognitive health. J Aging Phys Act 28:605–612. https://doi.org/10.1123/japa.2019-0100. (PMID: 10.1123/japa.2019-0100)
Palta P, Schneider ALC, Biessels GJ et al (2014) Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Int Neuropsychol Soc 20:278–291. https://doi.org/10.1017/S1355617713001483. (PMID: 10.1017/S1355617713001483245559604132660)
Pan B, Ge L, Xun Y-q et al (2018) Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 15:72. https://doi.org/10.1186/s12966-018-0703-3. (PMID: 10.1186/s12966-018-0703-3300457406060544)
Rikli RE, Jones CJ (2013) Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 53:255–267. https://doi.org/10.1093/geront/gns071. (PMID: 10.1093/geront/gns07122613940)
Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D (2020) Brain-derived neurotrophic factor and diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms21030841. (PMID: 10.3390/ijms21030841320129427037992)
Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843. (PMID: 10.1016/j.diabres.2019.10784331518657)
Sanders LMJ, Hortobágyi T, van la Bastide Gemert S et al (2019) Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One 14:e0210036. https://doi.org/10.1371/journal.pone.0210036. (PMID: 10.1371/journal.pone.0210036306296316328108)
Scarpina F, Tagini S (2017) The stroop color and word test. Front Psychol 8:1–8. https://doi.org/10.3389/fpsyg.2017.00557. (PMID: 10.3389/fpsyg.2017.00557)
Sharma G, Parihar A, Talaiya T et al (2020) Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2019-0105. (PMID: 10.1515/jbcpp-2019-010534005842)
Silveira-Rodrigues JG, Pires W, Gomes PF et al (2021) Combined exercise training improves specific domains of cognitive functions and metabolic markers in middle-aged and older adults with type 2 diabetes mellitus. Diabetes Res Clin Pract 173:108700. https://doi.org/10.1016/j.diabres.2021.108700. (PMID: 10.1016/j.diabres.2021.10870033600868)
Sperandio EF, Arantes RL, Matheus AC et al (2015) Intensity and physiological responses to the 6-minute walk test in middle-aged and older adults: a comparison with cardiopulmonary exercise testing. Braz J Med Biol Res 48:349–353. https://doi.org/10.1590/1414-431x20144235. (PMID: 10.1590/1414-431x20144235257148884418366)
Sun Z, Yu J, Liu Y-L et al (2018) Reduced serum levels of brain-derived neurotrophic factor are related to mild cognitive impairment in Chinese patients with type 2 diabetes mellitus. Ann Nutr Metab 73:271–281. https://doi.org/10.1159/000493275. (PMID: 10.1159/00049327530308512)
Świątoniowska-Lonc N, Polański J, Tański W, Jankowska-Polańska B (2021) Impact of cognitive impairment on adherence to treatment and self-care in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes Targets Ther 14:193–203. https://doi.org/10.2147/DMSO.S284468. (PMID: 10.2147/DMSO.S284468)
Swift DL, Johannsen NM, Myers VH et al (2012) The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes. PLoS One 7:e42785. https://doi.org/10.1371/journal.pone.0042785. (PMID: 10.1371/journal.pone.0042785228801083412800)
Sylow L, Kleinert M, Richter EA, Jensen TE (2017) Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat Rev Endocrinol 13:133–148. https://doi.org/10.1038/nrendo.2016.162. (PMID: 10.1038/nrendo.2016.16227739515)
Tang L, Kang Y, Yin B et al (2017) Effects of weight-bearing ladder and aerobic treadmill exercise on learning and memory ability of diabetic rats and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33:436–440. https://doi.org/10.12047/j.cjap.5570.2017.105. (PMID: 10.12047/j.cjap.5570.2017.10529926589)
Teixeira RB, Marins JCB, Amorim PRS et al (2019) Evaluating the effects of exercise on cognitive function in hypertensive and diabetic patients using the mental test and training system. World J Biol Psychiatry 20:209–218. https://doi.org/10.1080/15622975.2017.1337222. (PMID: 10.1080/15622975.2017.133722228657472)
Tomporowski PD (2003) Effects of acute bouts of exercise on cognition. Acta Psychol (AMST) 112:297–324. https://doi.org/10.1016/S0001-6918(02)00134-8. (PMID: 10.1016/S0001-6918(02)00134-812595152)
Tsai CL, Ukropec J, Ukropcová B, Pai MC (2018) An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage Clin 17:272–284. https://doi.org/10.1016/j.nicl.2017.10.028. (PMID: 10.1016/j.nicl.2017.10.02829527475)
Vincent CM, Hall PA (2017) Cognitive effects of a 30-min aerobic exercise bout on adults with overweight/obesity and type 2 diabetes. Obes Sci Pract 3:289–297. https://doi.org/10.1002/osp4.112. (PMID: 10.1002/osp4.112290711055598020)
Walsh JJ, Tschakovsky ME (2018) Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab 43:1095–1104. https://doi.org/10.1139/apnm-2018-0192. (PMID: 10.1139/apnm-2018-019229775542)
Yaffe K, Falvey C, Hamilton N et al (2012) Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 69:1170–1175. https://doi.org/10.1001/archneurol.2012.1117. (PMID: 10.1001/archneurol.2012.1117227103333752423)
Zhen YF, Zhang J, Liu XY et al (2013) Low BDNF is associated with cognitive deficits in patients with type 2 diabetes. Psychopharmacology 227:93–100. https://doi.org/10.1007/s00213-012-2942-3. (PMID: 10.1007/s00213-012-2942-323263460)
معلومات مُعتمدة: APQ-00417-15 Fundação de Amparo à Pesquisa do Estado de Minas Gerais; APQ 0354615 Fundação de Amparo à Pesquisa do Estado de Minas Gerais
فهرسة مساهمة: Keywords: Cardiovascular exercise; Cognition; Cognitive impairment; Metabolic disease; Strength exercise
المشرفين على المادة: 0 (Brain-Derived Neurotrophic Factor)
تواريخ الأحداث: Date Created: 20230313 Date Completed: 20230411 Latest Revision: 20230411
رمز التحديث: 20230411
DOI: 10.1007/s00221-023-06588-8
PMID: 36912948
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1106
DOI:10.1007/s00221-023-06588-8