دورية أكاديمية

Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia.

التفاصيل البيبلوغرافية
العنوان: Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia.
المؤلفون: Gottschlich A; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.; Bavarian Cancer Research Center (BZKF), Munich, Germany.; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany., Thomas M; Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany.; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany., Grünmeier R; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Lesch S; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Rohrbacher L; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany., Igl V; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Briukhovetska D; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Benmebarek MR; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Vick B; Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany.; Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany., Dede S; Department of Neurology, University Hospital, LMU Munich, Munich, Germany., Müller K; Department of Neurology, University Hospital, LMU Munich, Munich, Germany., Xu T; Department of Neurology, University Hospital, LMU Munich, Munich, Germany., Dhoqina D; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Märkl F; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Robinson S; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany., Sendelhofert A; Institute of Pathology, LMU Munich, Munich, Germany., Schulz H; Institute of Pathology, LMU Munich, Munich, Germany., Umut Ö; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Kavaka V; Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany., Tsiverioti CA; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Carlini E; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Nandi S; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Strzalkowski T; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Lorenzini T; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Stock S; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany., Müller PJ; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Dörr J; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Seifert M; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Cadilha BL; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Brabenec R; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.; Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany., Röder N; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Rataj F; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Nüesch M; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany., Modemann F; Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.; Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany., Wellbrock J; Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Fiedler W; Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Kellner C; Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany., Beltrán E; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.; Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany., Herold T; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany., Paquet D; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany., Jeremias I; Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany.; Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany., von Baumgarten L; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.; Department of Neurosurgery, LMU Munich, Munich, Germany., Endres S; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany., Subklewe M; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany., Marr C; Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany., Kobold S; Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany. sebastian.kobold@med.uni-muenchen.de.; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany. sebastian.kobold@med.uni-muenchen.de.; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany. sebastian.kobold@med.uni-muenchen.de.
المصدر: Nature biotechnology [Nat Biotechnol] 2023 Nov; Vol. 41 (11), pp. 1618-1632. Date of Electronic Publication: 2023 Mar 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature America Publishing Country of Publication: United States NLM ID: 9604648 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1696 (Electronic) Linking ISSN: 10870156 NLM ISO Abbreviation: Nat Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature America Publishing
Original Publication: New York, NY : Nature Pub. Co., [1996-
مواضيع طبية MeSH: Transcriptome*/genetics , Leukemia, Myeloid, Acute*/genetics , Leukemia, Myeloid, Acute*/therapy , Leukemia, Myeloid, Acute*/metabolism, Humans ; T-Lymphocytes ; Immunotherapy, Adoptive ; Cell Line ; Cell Line, Tumor
مستخلص: Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.
(© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018). (PMID: 29972754743334710.1056/NEJMra1706169)
Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). (PMID: 29385370599639110.1056/NEJMoa1709866)
Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019). (PMID: 3050149010.1056/NEJMoa1804980)
Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019). (PMID: 31042825820296810.1056/NEJMoa1817226)
Lesch, S. et al. Determinants of response and resistance to CAR T cell therapy. Semin. Cancer Biol. 65, 80–90 (2020). (PMID: 3170599810.1016/j.semcancer.2019.11.004)
Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013). (PMID: 23423337518927210.1038/mt.2013.17)
Cummins, K. D. & Gill, S. Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin. Hematol. 56, 155–163 (2019). (PMID: 3092609210.1053/j.seminhematol.2018.08.008)
Cancer Genome Atlas Research Network et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013). (PMID: 10.1056/NEJMoa1301689)
Thol, F. & Ganser, A. Treatment of relapsed acute myeloid leukemia. Curr. Treat. Options Oncol. 21, 66 (2020). (PMID: 32601974732442810.1007/s11864-020-00765-5)
Cummins, K. D. & Gill, S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica 104, 1302–1308 (2019). (PMID: 31221785660107410.3324/haematol.2018.208751)
MacKay, M. et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020). (PMID: 3190740510.1038/s41587-019-0329-2)
Tambaro, F. P. et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 35, 3282–3286 (2021). (PMID: 33833386855095810.1038/s41375-021-01232-2)
Sauer, T. et al. CD70-specific CAR T-cells have potent activity against acute myeloid leukemia (AML) without HSC toxicity. Blood 138, 318–330 (2021). (PMID: 34323938832397710.1182/blood.2020008221)
Jetani, H. et al. Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia (AML). Blood 138, 1830–1842 (2021). (PMID: 34289026964278610.1182/blood.2020009192)
Myburgh, R. et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia 34, 2688–2703 (2020). (PMID: 3235856710.1038/s41375-020-0818-9)
Tashiro, H. et al. Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1. Mol. Ther. 25, 2202–2213 (2017). (PMID: 28676343558906410.1016/j.ymthe.2017.05.024)
Casucci, M. et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122, 3461–3472 (2013). (PMID: 2401646110.1182/blood-2013-04-493361)
Perna, F. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32, 506–519 (2017). (PMID: 29017060702543410.1016/j.ccell.2017.09.004)
Suva, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell 75, 7–12 (2019). (PMID: 3129920810.1016/j.molcel.2019.05.003)
Jing, Y. et al. Expression of chimeric antigen receptor therapy targets detected by single-cell sequencing of normal cells may contribute to off-tumor toxicity. Cancer Cell 39, 1558–1559 (2021). (PMID: 3467815310.1016/j.ccell.2021.09.016)
van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281 (2019). (PMID: 30827681651590410.1016/j.cell.2019.01.031)
Turei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021). (PMID: 33749993798303210.15252/msb.20209923)
Bausch-Fluck, D. et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10, e0121314 (2015). (PMID: 25894527440434710.1371/journal.pone.0121314)
Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018). (PMID: 30373828624328010.1073/pnas.1808790115)
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). (PMID: 3210320410.1038/s41596-020-0292-x)
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017). (PMID: 2849587610.1126/science.aal3321)
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017). (PMID: 28846088562313910.1038/nmeth.4407)
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020). (PMID: 32385277721097510.1038/s41467-020-16164-1)
Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019). (PMID: 31604275734352510.1126/science.aat5031)
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020). (PMID: 33208946770469710.1038/s41586-020-2922-4)
Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019). (PMID: 31892341693794410.1186/s13059-019-1906-x)
Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019). (PMID: 30554520658068310.1164/rccm.201712-2410OC)
MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018). (PMID: 30348985619728910.1038/s41467-018-06318-7)
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). (PMID: 31597160687671110.1038/s41586-019-1631-3)
Cheng, J. B. et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 25, 871–883 (2018). (PMID: 30355494636771610.1016/j.celrep.2018.09.006)
James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020). (PMID: 32066951721205010.1038/s41590-020-0602-z)
Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020). (PMID: 3221423510.1038/s41586-020-2157-4)
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018). (PMID: 2912613610.1093/nar/gkx1037)
Petti, A. A. et al. A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat. Commun. 10, 3660 (2019). (PMID: 31413257669412210.1038/s41467-019-11591-1)
Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021). (PMID: 33491336782963410.15252/msb.20209620)
Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell Neurosci. 14, 198 (2020). (PMID: 32848611742405810.3389/fncel.2020.00198)
Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011). (PMID: 22046273320311410.1371/journal.pone.0026317)
Chihara, T. et al. IL-34 and M-CSF share the receptor FMS but are not identical in biological activity and signal activation. Cell Death Differ. 17, 1917–1927 (2010). (PMID: 2048973110.1038/cdd.2010.60)
Qin, D. et al. Potential lung attack and lethality generated by EpCAM-specific CAR-T cells in immunocompetent mouse models. Oncoimmunology 9, 1806009 (2020). (PMID: 32923168745860710.1080/2162402X.2020.1806009)
Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014). (PMID: 24471431500184610.1146/annurev-immunol-032713-120240)
Edwards, D. K. T. et al. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood 133, 588–599 (2019). (PMID: 30425048636765010.1182/blood-2018-03-838946)
Pabst, C. et al. Identification of small molecules that support human leukemia stem cell activity ex vivo. Nat. Methods 11, 436–442 (2014). (PMID: 2456242310.1038/nmeth.2847)
Vick, B. et al. An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS ONE 10, e0120925 (2015). (PMID: 25793878436851810.1371/journal.pone.0120925)
McQuade, A. et al. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol. Neurodegener. 13, 67 (2018). (PMID: 30577865630387110.1186/s13024-018-0297-x)
Reifschneider, A. et al. Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO J. 41, e109108 (2022). (PMID: 35019161884498910.15252/embj.2021109108)
Sletta, K. Y., Castells, O. & Gjertsen, B. T. Colony stimulating factor 1 receptor in acute myeloid leukemia. Front. Oncol. 11, 654817 (2021). (PMID: 33842370802748010.3389/fonc.2021.654817)
Haque, A., Engel, J., Teichmann, S. A. & Lonnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017). (PMID: 28821273556155610.1186/s13073-017-0467-4)
Tamura, H. et al. Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin. Cancer Res. 11, 5708–5717 (2005). (PMID: 1611590710.1158/1078-0432.CCR-04-2672)
Re, F. et al. Expression of CD86 in acute myelogenous leukemia is a marker of dendritic/monocytic lineage. Exp. Hematol. 30, 126–134 (2002). (PMID: 1182304710.1016/S0301-472X(01)00768-8)
Zheng, Z. et al. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies. J. Exp. Clin. Cancer Res. 17, 251–258 (1998). (PMID: 9894758)
Gavile, C. M. et al. CD86 regulates myeloma cell survival. Blood Adv. 1, 2307–2319 (2017). (PMID: 29296880572962910.1182/bloodadvances.2017011601)
Sedek, L. et al. Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. J. Immunol. Methods 475, 112429 (2019). (PMID: 2953050810.1016/j.jim.2018.03.005)
Guinan, E. C., Gribben, J. G., Boussiotis, V. A., Freeman, G. J. & Nadler, L. M. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84, 3261–3282 (1994). (PMID: 752473310.1182/blood.V84.10.3261.3261)
Zhou, L. J. & Tedder, T. F. CD14 + blood monocytes can differentiate into functionally mature CD83 + dendritic cells. Proc. Natl Acad. Sci. USA 93, 2588–2592 (1996). (PMID: 86379183984110.1073/pnas.93.6.2588)
Smyth, C. et al. Identification of a dynamic intracellular reservoir of CD86 protein in peripheral blood monocytes that is not associated with the Golgi complex. J. Immunol. 160, 5390–5396 (1998). (PMID: 960513910.4049/jimmunol.160.11.5390)
Blair, H. A. & Deeks, E. D. Abatacept: a review in rheumatoid arthritis. Drugs 77, 1221–1233 (2017). (PMID: 2860816610.1007/s40265-017-0775-4)
Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021). (PMID: 34266984856338510.1158/2159-8290.CD-21-0407)
Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020). (PMID: 32961131764076310.1016/j.cell.2020.08.022)
Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019). (PMID: 10.1038/s41591-019-0564-6)
Jetani, H. et al. CAR T-cells targeting FLT3 have potent activity against FLT3 ITD + AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia 32, 1168–1179 (2018). (PMID: 2947272010.1038/s41375-018-0009-0)
Griciuc, A. et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 103, 820–835 (2019). (PMID: 31301936672821510.1016/j.neuron.2019.06.010)
Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015). (PMID: 2617920010.1016/S1470-2045(15)00132-1)
O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017). (PMID: 28724573576220310.1126/scitranslmed.aaa0984)
Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017). (PMID: 29025771571894510.1158/2159-8290.CD-17-0698)
Sterner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697–709 (2019). (PMID: 30463995637628110.1182/blood-2018-10-881722)
Tan, A. H. J., Vinanica, N. & Campana, D. Chimeric antigen receptor-T cells with cytokine neutralizing capacity. Blood Adv. 4, 1419–1431 (2020). (PMID: 32271901716028010.1182/bloodadvances.2019001287)
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018). (PMID: 29409532580205410.1186/s13059-017-1382-0)
Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: annotated data. Preprint at bioRxiv https://doi.org/10.1101/2021.12.16.473007 (2021).
Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016). (PMID: 2712212810.1186/s13059-016-0947-7)
Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122 (2016). (PMID: 279095755112579)
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). (PMID: 31740819688469310.1038/s41592-019-0619-0)
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://ui.adsabs.harvard.edu/abs/2018arXiv180203426M (2018).
Fischer, D. S. et al. Sfaira accelerates data and model reuse in single cell genomics. Genome Biol. 22, 248 (2021). (PMID: 34433466838603910.1186/s13059-021-02452-6)
Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021). (PMID: 33654293946972810.1038/s41591-020-01227-z)
Polanski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020). (PMID: 3140019710.1093/bioinformatics/btz625)
GTEx Consortium Human genomics. The Genotype–Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015). (PMID: 454748410.1126/science.1262110)
Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012). (PMID: 23258891356849910.1126/science.1228186)
Papatheodorou, I. et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 48, D77–D83 (2020). (PMID: 31665515)
Sandhofer, N. et al. Dual PI3K/mTOR inhibition shows antileukemic activity in MLL-rearranged acute myeloid leukemia. Leukemia 29, 828–838 (2015). (PMID: 2532268510.1038/leu.2014.305)
Sudo, T. et al. Functional hierarchy of c-Kit and c-FMS in intramarrow production of CFU-M. Oncogene 11, 2469–2476 (1995). (PMID: 8545103)
Benmebarek, M. R. et al. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 35, 2243–2257 (2021). (PMID: 33414484778908510.1038/s41375-020-01109-w)
van Gosliga, D. et al. Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Exp. Hematol. 35, 1538–1549 (2007). (PMID: 1788972110.1016/j.exphem.2007.07.001)
Herrmann, M. et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood 132, 2484–2494 (2018). (PMID: 3027510910.1182/blood-2018-05-849802)
Lesch, S. et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng. 5, 1246–1260 (2021). (PMID: 34083764761199610.1038/s41551-021-00737-6)
Dimoudis, N. et al. Antibodies binding to human CSF1R extracellular domain 4 and their use. European patent EP 2 510 010 B1 (2012).
Co, M. S. et al. Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith. US patent US2002/0176855A (2002).
Kochenderfer, J. et al. Chimeric antigen receptors targeting CD19. Patent Cooperation Treaty WO 2015/187528 A1 (2015).
Ghani, K. et al. Efficient human hematopoietic cell transduction using RD114- and GALV-pseudotyped retroviral vectors produced in suspension and serum-free media. Hum. Gene Ther. 20, 966–974 (2009). (PMID: 19453219286195210.1089/hum.2009.001)
Mulazzani, M. et al. Long-term in vivo microscopy of CAR T cell dynamics during eradication of CNS lymphoma in mice. Proc. Natl Acad. Sci. USA 116, 24275–24284 (2019). (PMID: 31712432688382310.1073/pnas.1903854116)
Thomas, M. Computational identification of targets for CAR-T cell therapy in AML. GitHub https://github.com/marrlab/CAR_T_TargetIdentification (2023).
معلومات مُعتمدة: 756017 International ERC_ European Research Council
تواريخ الأحداث: Date Created: 20230314 Date Completed: 20231113 Latest Revision: 20240304
رمز التحديث: 20240305
مُعرف محوري في PubMed: PMC7615296
DOI: 10.1038/s41587-023-01684-0
PMID: 36914885
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1696
DOI:10.1038/s41587-023-01684-0