دورية أكاديمية

Light-emitting diode (LED) photobiomodulation regulates thermogenesis and lipogenesis markers in adipose tissue and improves anthropometric and metabolic parameters in obese mice.

التفاصيل البيبلوغرافية
العنوان: Light-emitting diode (LED) photobiomodulation regulates thermogenesis and lipogenesis markers in adipose tissue and improves anthropometric and metabolic parameters in obese mice.
المؤلفون: Silva MCR; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil., Amaro LBR; Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil., Lima AT; Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil., Ferreira AC; Undergraduate Degree in Medicine, Unimontes, Montes Claros, Minas Gerais, Brazil., de Farias Lelis D; Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil., Andrade JMO; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil. joao.andrade@unimontes.br.; Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil. joao.andrade@unimontes.br.; Department of Nursing, State University of Montes Claros (Unimontes), Campus Universitário Prof. Darcy Ribeiro, Av. Prof. Rui Braga, s/n - Vila Mauriceia, Montes Claros, Minas Gerais, 39401-089, Brazil. joao.andrade@unimontes.br., Guimarães ALS; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil. andre.guimaraes@unimontes.br.; Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil. andre.guimaraes@unimontes.br.; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil. andre.guimaraes@unimontes.br.
المصدر: Lasers in medical science [Lasers Med Sci] 2023 Mar 15; Vol. 38 (1), pp. 85. Date of Electronic Publication: 2023 Mar 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: England NLM ID: 8611515 Publication Model: Electronic Cited Medium: Internet ISSN: 1435-604X (Electronic) Linking ISSN: 02688921 NLM ISO Abbreviation: Lasers Med Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer
Original Publication: London : Baillière Tindall, c1986-
مواضيع طبية MeSH: Lipogenesis*/genetics , Diet, High-Fat*, Male ; Animals ; Mice ; Mice, Obese ; Adipose Tissue/metabolism ; Adipose Tissue, Brown/metabolism ; Adipose Tissue, Brown/pathology ; Thermogenesis ; Mice, Inbred C57BL
مستخلص: To evaluate the effects of Light-Emitting Diode (LED) irradiation on the expression of thermogenesis and lipogenesis-associated markers in adipose tissue and metabolic parameters of obese mice. Twenty-four male mice were divided into four groups: i) ST fed standard diet; ii) HCD fed hyperglycemic diet; iii) LED + I fed hyperglycemic diet and irradiated with LED in the interscapular region; iv) LED + A fed hyperglycemic diet and irradiated with LED in the abdominal region. The first phase of the study comprehended the induction of obesity for 12 weeks. Next, the animals were submitted to six irradiation sessions (days 1, 3, 7, 10, 14, and 21) using a 660-nm LED (5.77 J/cm 2  at 48,1 mW/cm 2 ). Anthropometric, biochemical, and histological parameters and the expression of thermogenesis and lipogenesis-associated markers were assessed in adipose tissue. There was diminished weight gain between the HCD and LED + A groups (ST: 0.37 ± 0.65; HCD: 3.10 ± 0.89; LED + I: -1.26 ± 0.83; LED + A: -2.07 ± 1.27 g; p < 0.018). There was a 33.3% and 23.8% reduction in epidydimal adipose tissue weight and a 25% and 10.7% in the visceral adiposity for the LED + I and LED + A groups, respectively, when compared with HCD. There was a decreased accumulation of fat droplets in adipose tissue in LED + A and LED + I groups. Additionally, LED irradiation was associated with increased mRNA expression of uncoupling protein 1 (UCP1) in the brown adipose tissue (ST: 2.27 ± 0.19; HCD: 1.54 ± 0.12; LED + I: 2.44 ± 0.22; p = 0.014) and decreased fatty acid synthetase (FAS) expression in epidydimal adipose tissue (ST: 0.79 ± 0.13; HCD: 1.59 ± 0.13; LED + A: 0.85 ± 0.04; p = 0.0008). LED treatment improved anthropometric parameters, possibly associated with the histological alterations, thermogenesis and lipogenesis markers in white adipose tissue, and expression modulation in brown adipose tissue.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.)
References: Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF et al (2017) Obesity. Nat Rev Dis Primers 3:17034. https://doi.org/10.1038/nrdp.2017.34. (PMID: 10.1038/nrdp.2017.3428617414)
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB (2015) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 4(3):363–70. https://doi.org/10.1007/s13679-015-0169-4. (PMID: 10.1007/s13679-015-0169-426627494)
Prospective Studies C, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J et al (2009) Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373(9669):1083–96. https://doi.org/10.1016/S0140-6736(09)60318-4. (PMID: 10.1016/S0140-6736(09)60318-4)
Collaboration NCDRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387(10026):1377–96. https://doi.org/10.1016/S0140-6736(16)30054-X. (PMID: 10.1016/S0140-6736(16)30054-X)
Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376(3):254–66. https://doi.org/10.1056/NEJMra1514009. (PMID: 10.1056/NEJMra151400928099824)
Karpe F, Pinnick KE (2015) Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nat Rev Endocrinol 11(2):90–100. https://doi.org/10.1038/nrendo.2014.185. (PMID: 10.1038/nrendo.2014.18525365922)
Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13(11):633–43. https://doi.org/10.1038/nrendo.2017.90. (PMID: 10.1038/nrendo.2017.9028799554)
Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22. https://doi.org/10.3389/fcvm.2020.00022. (PMID: 10.3389/fcvm.2020.00022321587687052117)
Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I (2019) Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin Chim Acta 496:35–44. https://doi.org/10.1016/j.cca.2019.06.019. (PMID: 10.1016/j.cca.2019.06.01931229566)
Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y et al (2011) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19(1):13–6. https://doi.org/10.1038/oby.2010.105. (PMID: 10.1038/oby.2010.10520448535)
Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–63. https://doi.org/10.1038/nm.3361. (PMID: 10.1038/nm.336124100998)
Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33(4):183–4. https://doi.org/10.1089/pho.2015.9848. (PMID: 10.1089/pho.2015.9848258446814390214)
Hamblin MR (2016) Photobiomodulation or low-level laser therapy. J Biophotonics 9(11–12):1122–4. https://doi.org/10.1002/jbio.201670113. (PMID: 10.1002/jbio.201670113279737305215795)
de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3). https://doi.org/10.1109/JSTQE.2016.2561201.
Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–61. https://doi.org/10.3934/biophy.2017.3.337. (PMID: 10.3934/biophy.2017.3.337287482175523874)
Minatel DG, Frade MA, Franca SC, Enwemeka CS (2009) Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 41(6):433–41. https://doi.org/10.1002/lsm.20789. (PMID: 10.1002/lsm.2078919588536)
Oliveira MC, Menezes-Garcia Z, Henriques MC, Soriani FM, Pinho V, Faria AM et al (2013) Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity (Silver Spring) 21(9):E396-406. https://doi.org/10.1002/oby.20230. (PMID: 10.1002/oby.2023023696431)
Menezes-Garcia Z, Oliveira MC, Lima RL, Soriani FM, Cisalpino D, Botion LM et al (2014) Lack of platelet-activating factor receptor protects mice against diet-induced adipose inflammation and insulin-resistance despite fat pad expansion. Obesity (Silver Spring) 22(3):663–72. https://doi.org/10.1002/oby.20142. (PMID: 10.1002/oby.2014224339378)
Yoshimura TM, Sabino CP, Ribeiro MS (2016) Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice. J Biophoton 9(11–12):1255–62. https://doi.org/10.1002/jbio.201600088. (PMID: 10.1002/jbio.201600088)
Andrade JMO, Barcala-Jorge AS, Batista-Jorge GC, Paraíso AF, Freitas KM, Lelis DF et al (2019) Effect of resveratrol on expression of genes involved thermogenesis in mice and humans. Biomed Pharmacother Biomedecine pharmacotherapie. 112:108634. https://doi.org/10.1016/j.biopha.2019.108634. (PMID: 10.1016/j.biopha.2019.10863430797155)
Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502. https://doi.org/10.1093/clinchem/18.6.499. (PMID: 10.1093/clinchem/18.6.4994337382)
Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL et al (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition (Burbank, Los Angeles County, Calif) 30(7–8):915–9. https://doi.org/10.1016/j.nut.2013.11.016. (PMID: 10.1016/j.nut.2013.11.01624985011)
Danilenko KV, Mustafina SV, Pechenkina EA (2013) Bright light for weight loss: results of a controlled crossover trial. Obes Facts 6(1):28–38. https://doi.org/10.1159/000348549. (PMID: 10.1159/000348549234290945644670)
Dunai A, Novak M, Chung SA, Kayumov L, Keszei A, Levitan R et al (2007) Moderate exercise and bright light treatment in overweight and obese individuals. Obesity (Silver Spring) 15(7):1749–57. https://doi.org/10.1038/oby.2007.208. (PMID: 10.1038/oby.2007.20817636093)
Roche GC, Shanks S, Jackson RF, Holsey LJ (2017) Low-level laser therapy for reducing the hip, waist, and upper abdomen circumference of individuals with obesity. Photomed Laser Surg 35(3):142–9. https://doi.org/10.1089/pho.2016.4172. (PMID: 10.1089/pho.2016.417227935737)
Thornfeldt CR, Thaxton PM, Hornfeldt CS (2016) A six-week low-level laser therapy protocol is effective for reducing waist, hip, thigh, and upper abdomen circumference. J Clin Aesthet Dermatol 9(6):31–5. (PMID: 273860494928454)
Moon IJ, Choi JW, Jung CJ, Kim S, Park E, Won CH (2022) Efficacy and safety of a novel combined 1060-nm and 635-nm laser device for non-invasive reduction of abdominal and submental fat. Lasers Med Sci 37(1):505–12. https://doi.org/10.1007/s10103-021-03288-z. (PMID: 10.1007/s10103-021-03288-z33797649)
Neira R, Arroyave J, Ramirez H, Ortiz CL, Solarte E, Sequeda F et al (2002) Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Surg 110(3):912–22. https://doi.org/10.1097/00006534-200209010-00030 . (discussion 23-5). (PMID: 10.1097/00006534-200209010-0003012172159)
Medrado AP, Trindade E, Reis SR, Andrade ZA (2006) Action of low-level laser therapy on living fatty tissue of rats. Lasers Med Sci 21(1):19–23. https://doi.org/10.1007/s10103-005-0367-5. (PMID: 10.1007/s10103-005-0367-516565788)
Dalgaard LT, Pedersen O (2001) Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 44(8):946–65. https://doi.org/10.1007/s001250100596. (PMID: 10.1007/s00125010059611484071)
Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9(2):203–9. https://doi.org/10.1016/j.cmet.2008.12.014. (PMID: 10.1016/j.cmet.2008.12.01419187776)
Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–13. https://doi.org/10.1016/j.cell.2012.09.010. (PMID: 10.1016/j.cell.2012.09.010230631283782081)
Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers Surg Med 45(6):349–57. https://doi.org/10.1002/lsm.22153. (PMID: 10.1002/lsm.22153237494263769994)
Semenkovich CF (1997) Regulation of fatty acid synthase (FAS). Prog Lipid Res 36(1):43–53. https://doi.org/10.1016/S0163-7827(97)00003-9. (PMID: 10.1016/S0163-7827(97)00003-99373620)
Hillgartner FB, Salati LM, Goodridge AG (1995) Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 75(1):47–76. https://doi.org/10.1152/physrev.1995.75.1.47. (PMID: 10.1152/physrev.1995.75.1.477831398)
Wueest S, Rapold RA, Schumann DM, Rytka JM, Schildknecht A, Nov O et al (2010) Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice. J Clin Invest 120(1):191–202. https://doi.org/10.1172/JCI38388. (PMID: 10.1172/JCI3838819955656)
Mobbs CV, Makimura H (2002) Block the FAS, lose the fat. Nat Med 8(4):335–6. https://doi.org/10.1038/nm0402-335. (PMID: 10.1038/nm0402-33511927935)
Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD et al (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288(5475):2379–81. https://doi.org/10.1126/science.288.5475.2379. (PMID: 10.1126/science.288.5475.237910875926)
Kumar MV, Shimokawa T, Nagy TR, Lane MD (2002) Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci U S A 99(4):1921–5. https://doi.org/10.1073/pnas.042683699. (PMID: 10.1073/pnas.04268369911854492122295)
Bluher M, Kloting N, Wueest S, Schoenle EJ, Schon MR, Dietrich A et al (2014) Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes. J Clin Endocrinol Metab 99(1):E36-44. https://doi.org/10.1210/jc.2013-2488. (PMID: 10.1210/jc.2013-248824178789)
Berndt J, Kovacs P, Ruschke K, Kloting N, Fasshauer M, Schon MR et al (2007) Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 50(7):1472–80. https://doi.org/10.1007/s00125-007-0689-x. (PMID: 10.1007/s00125-007-0689-x17492427)
Castro KMR, de Paiva Carvalho RL, Junior GMR, Tavares BA, Simionato LH, Bortoluci CHF et al (2020) Can photobiomodulation therapy (PBMT) control blood glucose levels and alter muscle glycogen synthesis? J Photochem Photobiol B Biol 207:111877. https://doi.org/10.1016/j.jphotobiol.2020.111877. (PMID: 10.1016/j.jphotobiol.2020.111877)
Gong L, Zou Z, Huang L, Guo S, Xing D (2020) Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes. Cell Signal 67:109491. https://doi.org/10.1016/j.cellsig.2019.109491. (PMID: 10.1016/j.cellsig.2019.10949131809873)
فهرسة مساهمة: Keywords: Brown adipose tissue; Light-Emitting Diode; Lipogenesis; Obesity; Thermogenesis; White adipose tissue
تواريخ الأحداث: Date Created: 20230315 Date Completed: 20230320 Latest Revision: 20230320
رمز التحديث: 20240628
DOI: 10.1007/s10103-023-03743-z
PMID: 36920639
قاعدة البيانات: MEDLINE
الوصف
تدمد:1435-604X
DOI:10.1007/s10103-023-03743-z