دورية أكاديمية

A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies.

التفاصيل البيبلوغرافية
العنوان: A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies.
المؤلفون: Dienel GA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA., Schousboe A; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark., McKenna MC; Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA., Rothman DL; Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA.
المصدر: Journal of neurochemistry [J Neurochem] 2024 May; Vol. 168 (5), pp. 461-495. Date of Electronic Publication: 2023 Apr 13.
نوع المنشور: Biography; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
Original Publication: New York : Raven Press
مواضيع طبية MeSH: Astrocytes*/metabolism , Brain*/metabolism , Energy Metabolism*/physiology , Synaptic Transmission*/physiology, Animals ; Humans ; Cognition/physiology ; History, 20th Century ; History, 21st Century
مستخلص: Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K + from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K + uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
(© 2023 International Society for Neurochemistry.)
References: Abe, T., Takahashi, S., & Suzuki, N. (2006). Oxidative metabolism in cultured rat astroglia: Effects of reducing the glucose concentration in the culture medium and of D‐aspartate or potassium stimulation. Journal of Cerebral Blood Flow and Metabolism, 26, 153–160.
Ackermann, R. F., & Lear, J. L. (1989). Glycolysis‐induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose. Journal of Cerebral Blood Flow and Metabolism, 9, 774–785. https://doi.org/10.1038/jcbfm.1989.111.
Adachi, K., Cruz, N. F., Sokoloff, L., & Dienel, G. A. (1995). Labeling of metabolic pools by [6‐14C]glucose during K(+)‐induced stimulation of glucose utilization in rat brain. Journal of Cerebral Blood Flow and Metabolism, 15, 97–110.
Amaral, A. I., Hadera, M. G., Tavares, J. M., Kotter, M. R., & Sonnewald, U. (2016). Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia, 64, 21–34. https://doi.org/10.1002/glia.22900.
Amaral, A. I., Meisingset, T. W., Kotter, M. R., & Sonnewald, U. (2013). Metabolic aspects of neuron‐oligodendrocyte–astrocyte interactions. Frontiers in Endocrinology (Lausanne), 4, 54.
Amaral, A. I., Teixeira, A. P., Sonnewald, U., & Alves, P. M. (2011). Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: Importance of the pyruvate recycling pathway and glutamine oxidation. Journal of Neuroscience Research, 89, 700–710.
Anlauf, E., & Derouiche, A. (2013). Glutamine synthetase as an astrocytic marker: Its cell type and vesicle localization. Frontiers in Endocrinology, 4, 144. https://doi.org/10.3389/fendo.2013.00144.
Ashrafi, G., & Ryan, T. A. (2017). Glucose metabolism in nerve terminals. Current Opinion in Neurobiology, 45, 156–161.
Ashrafi, G., Wu, Z., Farrell, R. J., & Ryan, T. A. (2017). GLUT4 mobilization supports energetic demands of active synapses. Neuron, 93, 606–615.e3. https://doi.org/10.1016/j.neuron.2016.12.020.
Auestad, N., Korsak, R. A., Morrow, J. W., & Edmond, J. (1991). Fatty acid oxidation and ketogenesis by astrocytes in primary culture. Journal of Neurochemistry, 56, 1376–1386.
Bak, L. K., Walls, A. B., Schousboe, A., Ring, A., Sonnewald, U., & Waagepetersen, H. S. (2009). Neuronal glucose but not lactate utilization is positively correlated with NMDA‐induced neurotransmission and fluctuations in cytosolic Ca2+ levels. Journal of Neurochemistry, 109(Suppl 1), 87–93.
Bak, L. K., Walls, A. B., Schousboe, A., & Waagepetersen, H. S. (2018). Astrocytic glycogen metabolism in the healthy and diseased brain. The Journal of Biological Chemistry, 293, 7108–7116.
Bak, L. K., Ziemińska, E., Waagepetersen, H. S., Schousboe, A., & Albrecht, J. (2008). Metabolism of [U‐13C]glutamine and [U‐13C]glutamate in isolated rat brain mitochondria suggests functional phosphate‐activated glutaminase activity in matrix. Neurochemical Research, 33, 273–278.
Balazs, R. (1965). Control of glutamate oxidation in brain and liver mitochondrial systems. The Biochemical Journal, 95, 497–508.
Baquer, N. Z., Hothersall, J. S., McLean, P., & Greenbaum, A. L. (1977). Aspects of carbohydrate metabolism in developing brain. Developmental Medicine and Child Neurology, 19, 81–104.
Bauer, D. E., Jackson, J. G., Genda, E. N., Montoya, M. M., Yudkoff, M., & Robinson, M. B. (2012). The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochemistry International, 61, 566–574. https://doi.org/10.1016/j.neuint.2012.01.013.
Bender, A. S., & Hertz, L. (1987). Pharmacological characteristics of diazepam receptors in neurons and astrocytes in primary cultures. Journal of Neuroscience Research, 18, 366–372.
Benjamin, A. M., & Quastel, J. H. (1972). Locations of amino acids in brain slices from the rat. Tetrodotoxin‐sensitive release of amino acids. The Biochemical Journal, 128, 631–646.
Benjamin, A. M., & Quastel, J. H. (1974). Fate of L‐glutamate in the brain. Journal of Neurochemistry, 23, 457–464.
Bergles, D. E., Diamond, J. S., & Jahr, C. E. (1999). Clearance of glutamate inside the synapse and beyond. Current Opinion in Neurobiology, 9, 293–298.
Bernstein, H. G., Bannier, J., Meyer‐Lotz, G., Steiner, J., Keilhoff, G., Dobrowolny, H., Walter, M., & Bogerts, B. (2014). Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra‐astroglial protein localization. Journal of Chemical Neuroanatomy, 61‐62, 33–50.
Booher, J., & Sensenbrenner, M. (1972). Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology, 2, 97–105.
Brancati, G. E., Rawas, C., Ghestem, A., Bernard, C., & Ivanov, A. I. (2021). Spatio‐temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2013972118.
Breckenridge, B. M., & Norman, J. H. (1962). Glycogen phosphorylase in brain. Journal of Neurochemistry, 9, 383–392.
Breckenridge, B. M., & Norman, J. H. (1965). The conversion of phosphorylase b to phosphorylase a in brain. Journal of Neurochemistry, 12, 51–57.
Brekke, E., Morken, T. S., & Sonnewald, U. (2015). Glucose metabolism and astrocyte‐neuron interactions in the neonatal brain. Neurochemistry International, 82, 33–41.
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22, 183–192. https://doi.org/10.1523/JNEUROSCI.22‐01‐00183.2002.
Carlson, G. M., Dienel, G. A., & Colbran, R. J. (2018). Introduction to the thematic Minireview series: Brain glycogen metabolism. The Journal of Biological Chemistry, 293, 7087–7088.
Cerdan, S. (2017). Twenty‐seven years of cerebral pyruvate recycling. Neurochemical Research, 42, 1621–1628.
Cerdan, S., Künnecke, B., & Seelig, J. (1990). Cerebral metabolism of [1,2‐13C2]acetate as detected by in vivo and in vitro 13C NMR. The Journal of Biological Chemistry, 265, 12916–12926.
Cesar, M., & Hamprecht, B. (1995). Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. Journal of Neurochemistry, 64, 2312–2318.
Chen, Y., Du, T., Peng, L., Gibbs, M. E., & Hertz, L. (2016). Sequential astrocytic 5‐HT2B receptor stimulation, [Ca2+]i regulation, glycogenolysis, glutamate synthesis and K+ homeostasis are similar but not identical in learning and mood regulation. Frontiers in Integrative Neuroscience, 9, 67. https://doi.org/10.3389/fnint.2015.00067.
Chen, Y., & Hertz, L. (1996). Inhibition of noradrenaline stimulated increase in [Ca2+]i in cultured astrocytes by chronic treatment with a therapeutically relevant lithium concentration. Brain Research, 711, 245–248.
Chih, C. P., Lipton, P., & Roberts, E. L., Jr. (2001). Do active cerebral neurons really use lactate rather than glucose? Trends in Neurosciences, 24, 573–578.
Chih, C. P., & Roberts, E. L., Jr. (2003). Energy substrates for neurons during neural activity: A critical review of the astrocyte‐neuron lactate shuttle hypothesis. Journal of Cerebral Blood Flow and Metabolism, 23, 1263–1281.
Chowdhury, G. M., Patel, A. B., Mason, G. F., Rothman, D. L., & Behar, K. L. (2007). Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. Journal of Cerebral Blood Flow and Metabolism, 27, 1895–1907.
Chowdhury, G. M. I., Jiang, L., Rothman, D. L., & Behar, K. L. (2014). The contribution of ketone bodies to basal and activity‐dependent neuronal oxidation in vivo. Journal of Cerebral Blood Flow and Metabolism, 34, 1233–1242.
Code, W. E., Hertz, L., & White, H. S. (1990). Midazolam potently affects free calcium concentration in astrocytes. Canadian Journal of Anaesthesia, 37, S27.
Collins, R. C., McCandless, D. W., & Wagman, I. L. (1987). Cerebral glucose utilization: Comparison of [14C]deoxyglucose and [6‐14C]glucose quantitative autoradiography. Journal of Neurochemistry, 49, 1564–1570.
Cooper, A. J. L., Duffy, T. E., McDonald, J. M., & Gelbard, A. S. (1981). 13N as a tracer for studying ammonia uptake and metabolism in the brain. In J. W. Root & K. A. Krohn (Eds.), Short‐lived radionuclides in chemistry and biology. Advances in chemistry series (Vol. 197, pp. 369–388). American Chemical Society.
Cooper, A. J. L., & Lai, J. C. (1987). Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochemical Pathology, 6, 67–95.
Cooper, A. J. L., Mora, S. N., Cruz, N. F., & Gelbard, A. S. (1985). Cerebral ammonia metabolism in hyperammonemic rats. Journal of Neurochemistry, 44, 1716–1723.
Cooper, A. J. L., & Plum, F. (1987). Biochemistry and physiology of brain ammonia. Physiological Reviews, 67, 440–519. https://doi.org/10.1152/physrev.1987.67.2.440.
Cremer, J. E. (1964). Amino acid metabolism in rat brain studied with 14C‐labeled glucose. Journal of Neurochemistry, 11, 165–185.
Cremer, J. E. (1982). Substrate utilization and brain development. Journal of Cerebral Blood Flow and Metabolism, 2, 394–407.
Cremer, J. E., Teal, H. M., & Heath, D. F. (1975). Regulatory factors in glucose and ketone body utilization in the developing brain. In F. A. Hommes & C. J. Van den Berg (Eds.), Normal and pathological development of energy metabolism (pp. 133–142). Academic Press.
Cruz, F., Scott, S. R., Barroso, I., Santisteban, P., & Cerdan, S. (1998). Ontogeny and cellular localization of the pyruvate recycling system in rat brain. Journal of Neurochemistry, 70, 2613–2619.
Cruz, N. F., Adachi, K., & Dienel, G. A. (1999). Rapid efflux of lactate from cerebral cortex during K+‐induced spreading cortical depression. Journal of Cerebral Blood Flow and Metabolism, 19, 380–392.
Cruz, N. F., Ball, K. K., & Dienel, G. A. (2007). Functional imaging of focal brain activation in conscious rats: Impact of [(14)C]glucose metabolite spreading and release. Journal of Neuroscience Research, 85, 3254–3266.
Cruz, N. F., Ball, K. K., Froehner, S. C., Adams, M. E., & Dienel, G. A. (2013). Regional registration of [6‐14C]glucose metabolism during brain activation of α‐syntrophin knockout mice. Journal of Neurochemistry, 125, 247–259.
Cruz, N. F., & Dienel, G. A. (2002). High glycogen levels in brains of rats with minimal environmental stimuli: Implications for metabolic contributions of working astrocytes. Journal of Cerebral Blood Flow and Metabolism, 22, 1476–1489.
Curtis, D. R., & Johnston, G. A. (1974). Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol, 69, 97–188.
Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1959a). Chemical excitation of spinal neurones. Nature, 183, 611–612.
Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1959b). The depression of spinal neurones by gamma‐amino‐n‐butyric acid and beta‐alanine. The Journal of Physiology, 146, 185–203.
Dalsgaard, M. K. (2006). Fuelling cerebral activity in exercising man. Journal of Cerebral Blood Flow and Metabolism, 26, 731–750.
Dalsgaard, M. K., Quistorff, B., Danielsen, E. R., Selmer, C., Vogelsang, T., & Secher, N. H. (2004). A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. The Journal of Physiology, 554, 571–578.
Dalsgaard, M. K., & Secher, N. H. (2007). The brain at work: A cerebral metabolic manifestation of central fatigue? Journal of Neuroscience Research, 85, 3334–3339.
Dalsgaard, M. K., Volianitis, S., Yoshiga, C. C., Dawson, E. A., & Secher, N. H. (2004). Cerebral metabolism during upper and lower body exercise. Journal of Applied Physiology, 97, 1733–1739.
D'Amelio, F., Eng, L. F., & Gibbs, M. A. (1990). Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system. Glia, 3, 335–341. https://doi.org/10.1002/glia.440030504.
Del Tufo, S. N., Frost, S. J., Hoeft, F., Cutting, L. E., Molfese, P. J., Mason, G. F., Rothman, D. L., Fulbright, R. K., & Pugh, K. R. (2018). Neurochemistry predicts convergence of written and spoken language: A proton magnetic resonance spectroscopy study of cross‐modal language integration. Frontiers in Psychology, 9, 1507.
Dennis, S. C., & Clark, J. B. (1977). The pathway of glutamate metabolism in rat brain mitochondria. The Biochemical Journal, 168, 521–527.
Dennis, S. C., Lai, J. C. K., & Clark, J. B. (1977). Comparative studies on glutamate metabolism in synpatic and non‐synaptic rat brain mitochondria. The Biochemical Journal, 164, 727–736.
Derouiche, A., Haseleu, J., & Korf, H. W. (2015). Fine astrocyte processes contain very small mitochondria: Glial oxidative capability may fuel transmitter metabolism. Neurochemical Research, 40, 2402–2413.
Diaz, S. L., Doly, S., Narboux‐Nême, N., Fernández, S., Mazot, P., Banas, S. M., Boutourlinsky, K., Moutkine, I., Belmer, A., Roumier, A., & Maroteaux, L. (2012). 5‐HT(2B) receptors are required for serotonin‐selective antidepressant actions. Molecular Psychiatry, 17, 154–163.
Diaz‐Garcia, C. M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., & Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 26, 361–374.e364.
Diaz‐Garcia, C. M., & Yellen, G. (2019). Neurons rely on glucose rather than astrocytic lactate during stimulation. Journal of Neuroscience Research, 97, 883–889.
Dichter, M. A. (1978). Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and synapse formation. Brain Research, 149, 279–293.
Dienel, G. A. (2012a). Brain lactate metabolism: The discoveries and the controversies. Journal of Cerebral Blood Flow and Metabolism, 32, 1107–1138.
Dienel, G. A. (2012b). Exploring and mapping the world of astrocytes. Neurochemical Research, 37, 2295–2298.
Dienel, G. A. (2012c). Fueling and imaging brain activation. ASN Neuro, 4(5), 267–321. 10.1042/AN20120021.
Dienel, G. A. (2013). Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis? Neurochemistry International, 63, 244–258.
Dienel, G. A. (2017). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte‐neuron lactate shuttle in brain. Journal of Neuroscience Research, 95, 2103–2125. https://doi.org/10.1002/jnr.24015.
Dienel, G. A. (2019a). Brain glucose metabolism: Integration of energetics with function. Physiological Reviews, 99, 949–1045.
Dienel, G. A. (2019b). Does shuttling of glycogen‐derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? Journal of Neuroscience Research, 97, 863–882.
Dienel, G. A. (2019c). The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively‐important highway for nutrient delivery. Journal of Neuroscience Research, 97, 854–862.
Dienel, G. A. (2020). Hypothesis: A novel neuroprotective role for glucose‐6‐phosphatase (G6PC3) in brain‐to maintain energy‐dependent functions including cognitive processes. Neurochemical Research, 45, 2529–2552.
Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: Does cell‐to‐cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45, 321–351.
Dienel, G. A., & Cruz, N. F. (2016). Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 138, 14–52.
Dienel, G. A., Cruz, N. F., Sokoloff, L., & Driscoll, B. F. (2017). Determination of glucose utilization rates in cultured astrocytes and neurons with [14C]deoxyglucose: Progress, pitfalls, and discovery of intracellular glucose compartmentation. Neurochemical Research, 42, 50–63.
Dienel, G. A., & Hertz, L. (2001). Glucose and lactate metabolism during brain activation. Journal of Neuroscience Research, 66, 824–838.
Dienel, G. A., & Rothman, D. L. (2019). Glycogenolysis in cerebral cortex during sensory stimulation, acute hypoglycemia, and exercise: Impact on astrocytic energetics, aerobic glycolysis, and astrocyte‐neuron interactions. Advances in Neurobiology, 23, 209–267.
Dienel, G. A., & Rothman, D. L. (2020). Reevaluation of astrocyte‐neuron energy metabolism with astrocyte volume fraction correction: Impact on cellular glucose oxidation rates, glutamate‐glutamine cycle energetics, glycogen levels and utilization rates vs. exercising muscle, and Na(+)/K(+) pumping rates. Neurochemical Research, 45, 2607–2630.
Dienel, G. A., Wang, R. Y., & Cruz, N. F. (2002). Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose‐oxygen uptake ratio rises. Journal of Cerebral Blood Flow and Metabolism, 22, 1490–1502.
DiNuzzo, M. (2019). How glycogen sustains brain function: A plausible allosteric signaling pathway mediated by glucose phosphates. Journal of Cerebral Blood Flow and Metabolism, 39, 1–8. https://doi.org/10.1177/0271678x198567130.
DiNuzzo, M., Giove, F., Maraviglia, B., & Mangia, S. (2017). Computational flux balance analysis predicts that stimulation of energy metabolism in astrocytes and their metabolic interactions with neurons depend on uptake of K+ rather than glutamate. Neurochemical Research, 42, 202–216.
DiNuzzo, M., Mangia, S., Maraviglia, B., & Giove, F. (2010a). Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: Evidence from mathematical modeling. Journal of Cerebral Blood Flow and Metabolism, 30, 586–602.
DiNuzzo, M., Mangia, S., Maraviglia, B., & Giove, F. (2010b). Glycogenolysis in astrocytes supports blood‐borne glucose channeling not glycogen‐derived lactate shuttling to neurons: Evidence from mathematical modeling. Journal of Cerebral Blood Flow and Metabolism, 30, 1895–1904. https://doi.org/10.1038/jcbfm.2010.151.
DiNuzzo, M., Mangia, S., Maraviglia, B., & Giove, F. (2012). The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochemical Research, 37, 2432–2438.
DiNuzzo, M., Mangia, S., Maraviglia, B., & Giove, F. (2013). Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochemistry International, 63, 458–464.
DiNuzzo, M., Maraviglia, B., & Giove, F. (2011). Why does the brain (not) have glycogen? BioEssays, 33, 319–326.
DiNuzzo, M., & Schousboe, A. (2019). Brain glycogen metabolism. In A. Schousboe (Ed.), Advances in neurobiology (Vol. 23, p. 443). Springer Nture Switzerland AG.
Dittmann, L., Hertz, L., Schousboe, A., Fosmark, H., Sensenbrenner, M., & Mandel, P. (1973). Energy metabolism of nerve cells during differentiation. O2 uptake, lactate production and ATP content of chick embryo brain cells before and after cultivation in the Rose chamber. Experimental Cell Research, 80, 425–431.
Dittmann, L., Sensenbrenner, M., Hertz, L., & Mandel, P. (1973). Respiration by cultivated astrocytes and neurons from the cerebral hemispheres. Journal of Neurochemistry, 21, 191–198.
Drejer, J., Larsson, O. M., Kvamme, E., Svenneby, G., Hertz, L., & Schousboe, A. (1985). Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellum in vivo. Neurochemical Research, 10, 49–62.
Drejer, J., Larsson, O. M., & Schousboe, A. (1982). Characterization of L‐glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Experimental Brain Research, 47, 259–269.
Drejer, J., Larsson, O. M., & Schousboe, A. (1983). Characterization of uptake and release processes for D‐ and L‐aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochemical Research, 8, 231–243.
Duarte, J. M., Lanz, B., & Gruetter, R. (2011). Compartmentalized cerebral metabolism of [1,6‐(13)C]glucose determined by in vivo (13)C NMR spectroscopy at 14.1 T. Frontiers in Neuroenergetics, 3, 3.
Duman, R. S. (2009). Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: Stress and depression. Dialogues in Clinical Neuroscience, 11, 239–255.
Duran, J., Gruart, A., Varea, O., López‐Soldado, I., Delgado‐García, J. M., & Guinovart, J. J. (2019). Lack of neuronal glycogen impairs memory formation and learning‐dependent synaptic plasticity in mice. Frontiers in Cellular Neuroscience, 13, 371. https://doi.org/10.3389/fncel.2019.00374.
Duran, J., Saez, I., Gruart, A., Guinovart, J. J., & Delgado‐Garcia, J. M. (2013). Impairment in long‐term memory formation and learning‐dependent synaptic plasticity in mice lacking glycogen synthase in the brain. Journal of Cerebral Blood Flow and Metabolism, 33, 550–556.
Edmond, J., Robbins, R. A., Bergstrom, J. D., Cole, R. A., & de Vellis, J. (1987). Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. Journal of Neuroscience Research, 18, 551–561.
Eleftheriou, A., Ravotto, L., Wyss, M. T., Warnock, G., Siebert, A., Zaiss, M., & Weber, B. (2023). Simultaneous dynamic glucose‐enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. NeuroImage, 265, 119762.
Eng, L. F., Vanderhaeghen, J. J., Bignami, A., & Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Research, 28, 351–354.
Erecinska, M., & Silver, I. A. (1990). Metabolism and role of glutamate in mammalian brain. Progress in Neurobiology, 35, 245–296.
Farinelli, S. E., & Nicklas, W. J. (1992). Glutamate metabolism in rat cortical astrocyte cultures. Journal of Neurochemistry, 58, 1905–1915. https://doi.org/10.1111/j.1471‐4159.1992.tb10068.x.
Ferreira, G. C., Karimi, A. J., Waddell, J., & McKenna, M. C. (2021). Metabolism of [1,6‐(13) C]glucose in the cerebellum of 18‐day‐old rats: Comparison with cerebral metabolism. Journal of Neurochemistry, 157, 1946–1962.
Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences of the United States of America, 83, 1140–1144.
Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–464.
Frigerio, F., Karaca, M., De Roo, M., Mlynárik, V., Skytt, D. M., Carobbio, S., Pajęcka, K., Waagepetersen, H. S., Gruetter, R., Muller, D., & Maechler, P. (2012). Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. Journal of Neurochemistry, 123, 342–348.
Gaitonde, M. K., Dahl, D. R., & Elliott, K. A. (1965). Entry of glucose carbon into amino acids of rat brain and liver in vivo after injection of uniformly 14C‐labelled glucose. The Biochemical Journal, 94, 345–352.
Gandhi, G. K., Ball, K. K., Cruz, N. F., & Dienel, G. A. (2010). Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro, 2, e00030.
Gandhi, G. K., Cruz, N. F., Ball, K. K., & Dienel, G. A. (2009). Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. Journal of Neurochemistry, 111, 522–536.
Gao, V., Suzuki, A., Magistretti, P. J., Lengacher, S., Pollonini, G., Steinman, M. Q., & Alberini, C. M. (2016). Astrocytic beta2‐adrenergic receptors mediate hippocampal long‐term memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 113, 8526–8531.
Garlin, A. B., Sinor, A. D., Sinor, J. D., Jee, S. H., Grinspan, J. B., & Robinson, M. B. (1995). Pharmacology of sodium‐dependent high‐affinity L‐[3H]glutamate transport in glial cultures. Journal of Neurochemistry, 64, 2572–2580. https://doi.org/10.1046/j.1471‐4159.1995.64062572.x.
Gebril, H. M., Avula, B., Wang, Y. H., Khan, I. A., & Jekabsons, M. B. (2016). (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Neurochemistry International, 93, 26–39.
Genda, E. N., Jackson, J. G., Sheldon, A. L., Locke, S. F., Greco, T. M., O'Donnell, J. C., Spruce, L. A., Xiao, R., Guo, W., Putt, M., Seeholzer, S., Ischiropoulos, H., & Robinson, M. B. (2011). Co‐compartmentalization of the astroglial glutamate transporter, GLT‐1, with glycolytic enzymes and mitochondria. The Journal of Neuroscience, 31, 18275–18288.
Gentry, M. S., Guinovart, J. J., Minassian, B. A., Roach, P. J., & Serratosa, J. (2018). Lafora disease offers a unique window into neuronal glycogen. The Journal of Biological Chemistry, 293, 7117–7125.
Gibbs, M. E., Lloyd, H. G., Santa, T., & Hertz, L. (2007). Glycogen is a preferred glutamate precursor during learning in 1‐day‐old chick: Biochemical and behavioral evidence. Journal of Neuroscience Research, 85, 3326–3333.
Gruetter, R., Seaquist, E. R., Kim, S., & Ugurbil, K. (1998). Localized in vivo 13C‐NMR of glutamate metabolism in the human brain: Initial results at 4 tesla. Developmental Neuroscience, 20, 380–388.
Gruetter, R., Seaquist, E. R., & Ugurbil, K. (2001). A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. American Journal of Physiology. Endocrinology and Metabolism, 281, E100–E112.
Gundersen, V., Storm‐Mathisen, J., & Bergersen, L. H. (2015). Neuroglial transmission. Physiological Reviews, 95, 695–726.
Haberg, A., Qu, H., Bakken, I. J., Sande, L. M., White, L. R., Haraldseth, O., Unsgard, G., Aasly, J., & Sonnewald, U. (1998). In vitro and ex vivo 13C‐NMR spectroscopy studies of pyruvate recycling in brain. Developmental Neuroscience, 20, 389–398.
Haslam, R. J., & Krebs, H. A. (1963). The metabolism of glutamate in homogenates and slices of brain cortex. The Biochemical Journal, 88, 566–578.
Hertz, E., & Hertz, L. (1979). Polarographic measurement of oxygen uptake by astrocytes in primary cultures using the tissue‐culture flask as the respirometer chamber. In Vitro, 15, 429–436.
Hertz, E., Yu, A. C. H., Hertz, L., Juurlink, B. H. J., & Schousboe, A. (1989). Preparation of primary cultures of mouse cortical neurons. In A. Shahar, J. de Vellis, A. Vernadakis, & B. Haber (Eds.), A dissection and tissue culture manual of the nervous system (pp. 183–186). Alan R. Liss, Inc..
Hertz, L. (1966). Neuroglial localization of potassium and sodium effects on respiration in brain. Journal of Neurochemistry, 13, 1373–1387.
Hertz, L. (1969). The biochemistry of brain tissue. In E. E. Bittar & N. Bittar (Eds.), The biological basis of medicine (Vol. 5, pp. 3–37). Academic Press.
Hertz, L. (1977a). Biochemistry of glial cells. In S. Federoff & L. Hertz (Eds.), Cell, tissue and organ cultures in neurobiology (pp. 39–71). Academic Press.
Hertz, L. (1977b). Drug‐induced alterations of ion distribution at the cellular level of the central nervous system. Pharmacological Reviews, 29, 35–65.
Hertz, L. (1979). Inhibition by barbiturates of an intense net uptake of potassium into astrocytes. Neuropharmacology, 18, 629–632.
Hertz, L. (2004a). The astrocyte‐neuron lactate shuttle: A challenge of a challenge. Journal of Cerebral Blood Flow and Metabolism, 24, 1241–1248.
Hertz, L. (2004b). Intercellular metabolic compartmentation in the brain: Past, present and future. Neurochemistry International, 45, 285–296.
Hertz, L. (2013). The glutamate‐glutamine (GABA) cycle: Importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Frontiers in Endocrinology (Lausanne), 4, 59.
Hertz, L., Baldwin, F., & Schousboe, A. (1979). Serotonin receptors on astrocytes in primary cultures: Effects of methysergide and fluoxetine. Canadian Journal of Physiology and Pharmacology, 57, 223–226.
Hertz, L., Bock, E., & Schousboe, A. (1978). GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Developmental Neuroscience, 1, 226–238.
Hertz, L., & Chen, Y. (2016a). Editorial: All 3 types of glial cells are important for memory formation. Frontiers in Integrative Neuroscience, 10, 31. https://doi.org/10.3389/fnint.2016.00031.
Hertz, L., & Chen, Y. (2016b). Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neuroscience and Biobehavioral Reviews, 71, 484–505.
Hertz, L., & Chen, Y. (2017). Integration between glycolysis and glutamate‐glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate. Frontiers in Integrative Neuroscience, 11, 18.
Hertz, L., & Chen, Y. (2018a). Additional mechanisms for brain activation failure due to reduced glucose metabolism‐a commentary on Zilberter and Zilberter: The vicious circle of hypometabolism in neurodegenerative diseases. Journal of Neuroscience Research, 96, 757–761.
Hertz, L., & Chen, Y. (2018b). Glycogenolysis, an astrocyte‐specific reaction, is essential for both astrocytic and neuronal activities involved in learning. Neuroscience, 370, 27–36.
Hertz, L., Chen, Y., & Song, D. (2017). Astrocyte cultures mimicking brain astrocytes in gene expression, signaling, metabolism and K+ uptake and showing astrocytic gene expression overlooked by immunohistochemistry and in situ hybridization. Neurochemical Research, 42, 254–271. https://doi.org/10.1007/s11064‐016‐1828‐x.
Hertz, L., & Dienel, G. A. (2002). Energy metabolism in the brain. International Review of Neurobiology, 51, 1–102.
Hertz, L., & Dienel, G. A. (2005). Lactate transport and transporters: General principles and functional roles in brain cells. Journal of Neuroscience Research, 79, 11–18.
Hertz, L., Dittmann, L., & Mandel, P. (1973). K+ induced stimulation of oxygen uptake in cultured cerebral glial cells. Brain Research, 60, 517–520.
Hertz, L., Drejer, J., & Schousboe, A. (1988). Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochemical Research, 13, 605–610.
Hertz, L., & Gibbs, M. E. (2009). What learning in day‐old chickens can teach a neurochemist: Focus on astrocyte metabolism. Journal of Neurochemistry, 109(Suppl 1), 10–16.
Hertz, L., Gibbs, M. E., & Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction‐coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261.
Hertz, L., & Hertz, E. (2003). Cataplerotic TCA cycle flux determined as glutamate‐sustained oxygen consumption in primary cultures of astrocytes. Neurochemistry International, 43, 355–361.
Hertz, L., Juurlink, B. H. J., Fosmark, H., & Schousboe, A. (1982). Astrocytes in primary cultures. In S. E. Pfeiffer (Ed.), Neuroscience approached through cell culture (Vol. 1, pp. 175–186). CRC Press.
Hertz, L., Juurlink, B. H. J., Hertz, E., Fosmark, H., & Schousboe, A. (1989). Preparation of primary cultures of mouse (rat) astrocyes. In A. Shahar, J. De Vellis, A. Vernadakis, & B. Haber (Eds.), A dissection and tissue culture manual of the nervous system (pp. 105–108). Alan R. Liss, Inc..
Hertz, L., Juurlink, B. H. J., & Szuchet, S. (1984). Cell cultures. In A. Lajtha (Ed.), Handbook of neurochemistry (Vol. 8, 2nd ed., pp. 603–661). Plenum Press.
Hertz, L., & Kjeldsen, C. S. (1985). Functional role of the potassium‐induced stimulation of oxygen uptake in brain slices studied with cesium as a probe. Journal of Neuroscience Research, 14, 83–93. https://doi.org/10.1002/jnr.490140108.
Hertz, L., & Mukerji, S. (1980). Diazepam receptors on mouse astrocytes in primary cultures: Displacement by pharmacologically active concentrations of benzodiazepines or barbiturates. Canadian Journal of Physiology and Pharmacology, 58, 217–220.
Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow and Metabolism, 27, 219–249.
Hertz, L., Peng, L., & Lai, J. C. (1998). Functional studies in cultured astrocytes. Methods, 16, 293–310.
Hertz, L., Richardson, J. S., & Mukerji, S. (1980). Doxepin, a tricyclic antidepressant, binds to normal, intact astroglial cells in cultures and inhibits the isoproterenol‐induced increase in cyclic AMP production. Canadian Journal of Physiology and Pharmacology, 58, 1515–1519.
Hertz, L., & Robinson, S. R. (1999). Energy for neurotransmission. Science, 285, 639. https://doi.org/10.1126/science.285.5428.639a.
Hertz, L., & Rodrigues, T. B. (2014). Astrocytic‐neuronal‐astrocytic pathway selection for formation and degradation of glutamate/GABA. Frontiers in Endocrinology (Lausanne), 5, 42.
Hertz, L., & Rothman, D. L. (2016). Glucose, lactate, beta‐hydroxybutyrate, acetate, GABA, and succinate as substrates for synthesis of glutamate and GABA in the glutamine‐glutamate/GABA cycle. Advances in Neurobiology, 13, 9–42. https://doi.org/10.1007/978‐3‐319‐45096‐4_2.
Hertz, L., & Rothman, D. L. (2017). Glutamine‐glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology (Basel), 6(1), 17.
Hertz, L., Rothman, D. L., Li, B., & Peng, L. (2015). Chronic SSRI stimulation of astrocytic 5‐HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: A potential paradigm shift. Frontiers in Behavioral Neuroscience, 9, 25.
Hertz, L., & Sastry, B. R. (1978). Inhibition of gamma‐aminobutyric acid uptake into astrocytes by pentobarbital. Canadian Journal of Physiology and Pharmacology, 56, 1083–1087.
Hertz, L., & Schousboe, A. (1975). Ion and energy metabolism of the brain at the cellular level. International Review of Neurobiology, 18, 141–211.
Hertz, L., & Schousboe, A. (1980). Interactions between neurons and astrocytes in the turnover of GABA and glutamate. Brain Research Bulletin, 5, 389–395.
Hertz, L., Schousboe, A., Boechler, N., Mukerji, S., & Fedoroff, S. (1978). Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochemical Research, 3, 1–14.
Hertz, L., Song, D., Li, B., Du, T., Xu, J., Gu, L., Chen, Y., & Peng, L. (2014). Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs, Antibipolar drugs, GABA‐ergic drugs, and benzodiazepines) ameliorating mood disorders. Journal of Signal Transduction, 2014, 593934. https://doi.org/10.1155/2014/593934.
Hertz, L., Song, D., Xu, J., Peng, L., & Gibbs, M. E. (2015). Role of the astrocytic Na(+), K(+)‐ATPase in K(+) homeostasis in brain: K(+) uptake, signaling pathways and substrate utilization. Neurochemical Research, 40, 2505–2516.
Hertz, L., Swanson, R. A., Newman, G. C., Marrif, H., Juurlink, B. H., & Peng, L. (1998). Can experimental conditions explain the discrepancy over glutamate stimulation of aerobic glycolysis? Developmental Neuroscience, 20, 339–347.
Hertz, L., Xu, J., Song, D., Du, T., Li, B., Yan, E., & Peng, L. (2015). Astrocytic glycogenolysis: Mechanisms and functions. Metabolic Brain Disease, 30, 317–333.
Hertz, L., Xu, J., Song, D., Du, T., Yan, E., & Peng, L. (2013). Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na(+),K(+)‐ATPase and Marie E. Gibbs' pioneering learning studies. Frontiers in Integrative Neuroscience, 7, 20.
Hertz, L., Yu, A., Svenneby, G., Kvamme, E., Fosmark, H., & Schousboe, A. (1980). Absence of preferential glutamine uptake into neurons—An indication of a net transfer of TCA constituents from nerve endings to astrocytes? Neuroscience Letters, 16, 103–109. https://doi.org/10.1016/0304‐3940(80)90109‐3.
Hertz, L., Yu, A. C., & Schousboe, A. (1992). Uptake and metabolism of malate in neurons and astrocytes in primary cultures. Journal of Neuroscience Research, 33, 289–296.
Hertz, L., & Zielke, H. R. (2004). Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends in Neurosciences, 27, 735–743.
Hof, P. R., Pascale, E., & Magistretti, P. J. (1988). K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+‐dependent glycogen hydrolysis in mouse cerebral cortex. The Journal of Neuroscience, 8, 1922–1928. https://doi.org/10.1523/JNEUROSCI.08‐06‐01922.1988.
Hohnholt, M. C., Andersen, V. H., Andersen, J. V., Christensen, S. K., Karaca, M., Maechler, P., & Waagepetersen, H. S. (2018). Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. Journal of Cerebral Blood Flow and Metabolism, 38, 1754–1768.
Horder, J., Petrinovic, M. M., Mendez, M. A., Bruns, A., Takumi, T., Spooren, W., Barker, G. J., Künnecke, B., & Murphy, D. G. (2018). Glutamate and GABA in autism spectrum disorder—A translational magnetic resonance spectroscopy study in man and rodent models. Translational Psychiatry, 8, 106.
Hyder, F., Patel, A. B., Gjedde, A., Rothman, D. L., Behar, K. L., & Shulman, R. G. (2006). Neuronal‐glial glucose oxidation and glutamatergic‐GABAergic function. Journal of Cerebral Blood Flow and Metabolism, 26, 865–877.
Hyder, F., & Rothman, D. L. (2017). Advances in imaging brain metabolism. Annual Review of Biomedical Engineering, 19, 485–515.
Hyder, F., Rothman, D. L., & Bennett, M. R. (2013). Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proceedings of the National Academy of Sciences of the United States of America, 110, 3549–3554.
Jekabsons, M. B., Gebril, H. M., Wang, Y. H., Avula, B., & Khan, I. A. (2017). Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats. Neurochemistry International, 109, 54–67.
Johnstone, E., Frith, C. D., Crow, T. J., Carney, M. W. P., & Price, J. S. (1978). Mechanism of the antipsychotic effect IN the treatment of acute schizophrenia. The Lancet, 311, 848–851.
Juurlink, B. H., & Hertz, L. (1985). Plasticity of astrocytes in primary cultures: An experimental tool and a reason for methodological caution. Developmental Neuroscience, 7, 263–277.
Karaca, M., Frigerio, F., Migrenne, S., Martin‐Levilain, J., Skytt, D. M., Pajecka, K., Martin‐del‐Rio, R., Gruetter, R., Tamarit‐Rodriguez, J., Waagepetersen, H. S., Magnan, C., & Maechler, P. (2015). GDH‐dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Reports, 13, 365–375.
Karaca, M., & Maechler, P. (2014). Development of mice with brain‐specific deletion of floxed glud1 (glutamate dehydrogenase 1) using cre recombinase driven by the nestin promoter. Neurochemical Research, 39, 456–459.
Kaufman, E. E., & Driscoll, B. F. (1992). Carbon dioxide fixation in neuronal and astroglial cells in culture. Journal of Neurochemistry, 58, 258–262. https://doi.org/10.1111/j.1471‐4159.1992.tb09304.x.
Kaufman, E. E., & Driscoll, B. F. (1993). Evidence for cooperativity between neurons and astroglia in the regulation of CO2 fixation in vitro. Developmental Neuroscience, 15, 299–305.
Kerr, S. E. (1936). The carbohydrate metabolism of brain: 1. The determination of glycogen in nerve tissue. The Journal of Biological Chemistry, 116, 1–7.
Kerr, S. E. (1938). The carbohydrate metabolism of brain: VI. Isolation of glycogen. Journal of Biological Chemistry, 123, 443–449.
Kerr, S. E., & Ghantus, M. (1937). The carbohydrate metabolism of brain: III. On the origin of lactic acid. The Journal of Biological Chemistry, 117, 217–225.
Khanna, S., Briggs, Z., & Rink, C. (2015). Inducible glutamate oxaloacetate transaminase as a therapeutic target against ischemic stroke. Antioxidants & Redox Signaling, 22, 175–186.
Kihara, M., & Kubo, T. (1989). Aspartate aminotransferase for synthesis of transmitter glutamate in the medulla oblongata: Effect of aminooxyacetic acid and 2‐oxoglutarate. Journal of Neurochemistry, 52, 1127–1134.
Kish, P. E., Kim, S. Y., & Ueda, T. (1989). Ontogeny of glutamate accumulating activity in rat brain synaptic vesicles. Neuroscience Letters, 97, 185–190.
Künnecke, B., Cerdan, S., & Seelig, J. (1993). Cerebral metabolism of [1,2‐13C2]glucose and [U‐13C4]3‐hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR in Biomedicine, 6, 264–277.
Kvamme, E., Torgner, I. A., & Roberg, B. (2001). Kinetics and localization of brain phosphate activated glutaminase. Journal of Neuroscience Research, 66, 951–958.
Land, J. M., Booth, R. F., Berger, R., & Clark, J. B. (1977). Development of mitochondrial energy metabolism in rat brain. The Biochemical Journal, 164, 339–348.
Lange, S., Bak, L., Waagepetersen, H., Schousboe, A., & Norenberg, M. (2012). Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease. Neurochemical Research, 37, 2569–2588. https://doi.org/10.1007/s11064‐012‐0868‐0.
Lange, S. C., Winkler, U., Andresen, L., Byhro, M., Waagepetersen, H. S., Hirrlinger, J., & Bak, L. K. (2015). Dynamic changes in cytosolic ATP levels in cultured glutamatergic neurons during NMDA‐induced synaptic activity supported by glucose or lactate. Neurochemical Research, 40, 2517–2526.
Lanz, B., Gruetter, R., & Duarte, J. M. (2013). Metabolic flux and compartmentation analysis in the brain in vivo. Frontiers in Endocrinology (Lausanne)., 4, 156.
Lanz, B., Xin, L., Millet, P., & Gruetter, R. (2014). In vivo quantification of neuro‐glial metabolism and glial glutamate concentration using 1H‐[13C] MRS at 14.1T. Journal of Neurochemistry, 128, 125–139.
Larsson, O. M., Drejer, J., Kvamme, E., Svenneby, G., Hertz, L., & Schousboe, A. (1985). Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. International Journal of Developmental Neuroscience, 3, 177–185.
Lavialle, M., Aumann, G., Anlauf, E., Prols, F., Arpin, M., & Derouiche, A. (2011). Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 108, 12915–12919.
Lear, J. L., & Ackermann, R. F. (1988). Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3‐4, and 6 positions using double label quantitative digital autoradiography. Journal of Cerebral Blood Flow and Metabolism, 8, 575–585.
Lear, J. L., & Ackermann, R. F. (1989). Why the deoxyglucose method has proven so useful in cerebral activation studies: The unappreciated prevalence of stimulation‐induced glycolysis. Journal of Cerebral Blood Flow and Metabolism, 9, 911–913.
Lebon, V., Petersen, K. F., Cline, G. W., Shen, J., Mason, G. F., Dufour, S., Behar, K. L., Shulman, G. I., & Rothman, D. L. (2002). Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: Elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. The Journal of Neuroscience, 22, 1523–1531.
Leong, S. F., & Clark, J. B. (1984a). Regional development of glutamate dehydrogenase in the rat brain. Journal of Neurochemistry, 43, 106–111.
Leong, S. F., & Clark, J. B. (1984b). Regional enzyme development in rat brain. Enzymes associated with glucose utilization. The Biochemical Journal, 218, 131–138.
Leong, S. F., & Clark, J. B. (1984c). Regional enzyme development in rat brain. Enzymes of energy metabolism. Biochemical Journal, 218, 139–145.
Li, B., Gu, L., Hertz, L., & Peng, L. (2013). Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain. Neurochemical Research, 38, 2351–2358.
Li, B., Hertz, L., & Peng, L. (2012). Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochemistry International, 61, 1325–1332.
Li, B., Zhang, S., Zhang, H., Hertz, L., & Peng, L. (2011). Fluoxetine affects GluK2 editing, glutamate‐evoked Ca(2+) influx and extracellular signal‐regulated kinase phosphorylation in mouse astrocytes. Journal of Psychiatry & Neuroscience, 36, 322–338.
Li, B., Zhang, S., Zhang, H., Nu, W., Cai, L., Hertz, L., & Peng, L. (2008). Fluoxetine‐mediated 5‐HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology, 201, 443–458. https://doi.org/10.1007/s00213‐008‐1306‐5.
Linde, R., Hasselbalch, S. G., Topp, S., Paulson, O. B., & Madsen, P. L. (2006). Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat. Journal of Cerebral Blood Flow and Metabolism, 26, 170–180.
Linde, R., Schmalbruch, I. K., Paulson, O. B., & Madsen, P. L. (1999). The Kety‐Schmidt technique for repeated measurements of global cerebral blood flow and metabolism in the conscious rat. Acta Physiologica Scandinavica, 165, 395–401.
Lovatt, D., Sonnewald, U., Waagepetersen, H. S., Schousboe, A., He, W., Lin, J. H. C., Han, X., Takano, T., Wang, S., Sim, F. J., Goldman, S. A., & Nedergaard, M. (2007). The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. The Journal of Neuroscience, 27, 12255–12266.
Lowry, O. H., & Passonneau, J. V. (1972). A flexible system of enzymatic analysis. Academic Press.
Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., & Schulz, D. W. (1964). Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. The Journal of Biological Chemistry, 239, 18–30.
Lowry, O. H., Schulz, D. W., & Passonneau, J. V. (1964). Effects of Adenylic acid on the kinetics of muscle phosphorylase a. Journal of Biological Chemistry, 239, 1947–1953.
Lust, W. D., Passonneau, J. V., & Veech, R. L. (1973). Cyclic adenosine monphosphate, metabolites, and phosphorylase in neural tissue: A comparison a methods of fixation. Science, 181, 280–282.
Mächler, P., Wyss, M. T., Elsayed, M., Stobart, J., Gutierrez, R., von Faber‐Castell, A., Kaelin, V., Zuend, M., San Martín, A., Romero‐Gómez, I., Baeza‐Lehnert, F., Lengacher, S., Schneider, B. L., Aebischer, P., Magistretti, P. J., Barros, L. F., & Weber, B. (2016). In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metabolism, 23, 94–102. https://doi.org/10.1016/j.cmet.2015.10.010.
Maciejewski, P. K., & Rothman, D. L. (2008). Proposed cycles for functional glutamate trafficking in synaptic neurotransmission. Neurochemistry International, 52, 809–825.
Madsen, P. L., Cruz, N. F., Sokoloff, L., & Dienel, G. A. (1999). Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: Excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. Journal of Cerebral Blood Flow and Metabolism, 19, 393–400.
Madsen, P. L., Hasselbalch, S. G., Hagemann, L. P., Olsen, K. S., Bulow, J., Holm, S., Wildschiodtz, G., Paulson, O. B., & Lassen, N. A. (1995). Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: Evidence obtained with the Kety‐Schmidt technique. Journal of Cerebral Blood Flow and Metabolism, 15, 485–491.
Madsen, P. L., Linde, R., Hasselbalch, S. G., Paulson, O. B., & Lassen, N. A. (1998). Activation‐induced resetting of cerebral oxygen and glucose uptake in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 742–748.
Madsen, P. L., Schmidt, J. F., Holm, S., Jorgensen, H., Wildschiodtz, G., Christensen, N. J., Friberg, L., Vorstrup, S., & Lassen, N. A. (1992). Mental stress and cognitive performance do not increase overall level of cerebral O2 uptake in humans. Journal of Applied Physiology, 73, 420–426.
Magistretti, P. J., Hof, P. R., & Martin, J. L. (1986). Adenosine stimulates glycogenolysis in mouse cerebral cortex: A possible coupling mechanism between neuronal activity and energy metabolism. The Journal of Neuroscience, 6, 2558–2562.
Magistretti, P. J., Manthorpe, M., Bloom, F. E., & Varon, S. (1983). Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regulatory Peptides, 6, 71–80.
Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V., & Bloom, F. E. (1981). Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism. Proceedings of the National Academy of Sciences of the United States of America, 78, 6535–6539. https://doi.org/10.1073/pnas.78.10.6535.
Malik, P., McKenna, M. C., & Tildon, J. T. (1993). Regulation of malate dehydrogenases from neonatal, adolescent, and mature rat brain. Neurochemical Research, 18, 247–257.
Mangia, S., DiNuzzo, M., Giove, F., Carruthers, A., Simpson, I. A., & Vannucci, S. J. (2011). Response to “comment on recent modeling studies of astrocyte‐neuron metabolic interactions”: Much ado about nothing. Journal of Cerebral Blood Flow and Metabolism, 31, 1346–1353.
Mangia, S., Simpson, I. A., Vannucci, S. J., & Carruthers, A. (2009). The in vivo neuron‐to‐astrocyte lactate shuttle in human brain: Evidence from modeling of measured lactate levels during visual stimulation. Journal of Neurochemistry, 109(Suppl 1), 55–62.
Martinez‐Hernandez, A., Bell, K. P., & Norenberg, M. D. (1977). Glutamine synthetase: Glial localization in brain. Science, 195, 1356–1358.
Mason, G. F., Petersen, K. F., de Graaf, R. A., Shulman, G. I., & Rothman, D. L. (2007). Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1‐13C] and [2‐13C] glucose. Journal of Neurochemistry, 100, 73–86.
McKenna, M. C. (2007). The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. Journal of Neuroscience Research, 85, 3347–3358.
McKenna, M. C. (2012). Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3‐hydroxybutyrate in cortical astrocytes from rat brain. Neurochemical Research, 37, 2613–2626.
McKenna, M. C. (2013). Glutamate pays its own way in astrocytes. Frontiers in Endocrinology (Lausanne), 4, 191. https://doi.org/10.3389/fendo.2013.00191.
McKenna, M. C., & Edmond, J. (1998). Energy metabolism in brain function and neuroprotection. 3rd International Conference, Waterville Valley, N.H., July 1997. Vol. Developmental neuroscience 1998, Vol. 20, No. 4–5, 269–368. Karger.
McKenna, M. C., Scafidi, S., & Robertson, C. L. (2015). Metabolic alterations in developing brain after injury: Knowns and unknowns. Neurochemical Research, 40, 2527–2543. https://doi.org/10.1007/s11064‐015‐1600‐7.
McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., & Zielke, H. R. (1996). Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. Journal of Neurochemistry, 66, 386–393.
McKenna, M. C., Stevenson, J. H., Huang, X., Tildon, J. T., Zielke, C. L., & Hopkins, I. B. (2000). Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochemistry International, 36, 451–459.
McKenna, M. C., Stridh, M. H., McNair, L. F., Sonnewald, U., Waagepetersen, H. S., & Schousboe, A. (2016). Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. Journal of Neuroscience Research, 94, 1561–1571.
McKenna, M. C., Tildon, J. T., Stevenson, J. H., Boatright, R., & Huang, S. (1993). Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: Differences revealed using aminooxyacetate. Developmental Neuroscience, 15, 320–329.
McKenna, M. C., Tildon, J. T., Stevenson, J. H., & Hopkins, I. B. (1994). Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: Evidence for multiple compartments of tricarboxylic acid cycle activity. Developmental Neuroscience, 16, 291–300.
McKenna, M. C., Tildon, J. T., Stevenson, J. H., & Huang, X. (1996). New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Developmental Neuroscience, 18, 380–390.
McKenna, M. C., Tildon, J. T., Stevenson, J. H., Huang, X., & Kingwell, K. G. (1995). Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochemical Research, 20, 1491–1501.
McKenna, M. C., Waagepetersen, H. S., Schousboe, A., & Sonnewald, U. (2006). Neuronal and astrocytic shuttle mechanisms for cytosolic‐mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools. Biochemical Pharmacology, 71, 399–407.
McNair, L. M., Mason, G. F., Chowdhury, G. M., Jiang, L., Ma, X., Rothman, D. L., Waagepetersen, H. S., & Behar, K. L. (2022). Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2‐(13)C]/[1‐(13)C]glucose infusion and (1)H‐[(13)C]NMR ex vivo. Journal of Cerebral Blood Flow and Metabolism, 42, 1507–1523.
Medina, M. A., Jones, D. J., Stavinoha, W. B., & Ross, D. H. (1975). The levels of labile intermediary metabolites in mouse brain following rapid tissue fixation with microwave irradiation. Journal of Neurochemistry, 24, 223–227.
Mei, Y. Y., Wu, D. C., & Zhou, N. (2018). Astrocytic regulation of glutamate transmission in schizophrenia. Frontiers in Psychiatry, 9, 544. https://doi.org/10.3389/fpsyt.2018.00544.
Messer, A. (1977). Factors influencing monolayer cell culture morphology and survival of cerebellar granule cells from wild‐type and mutant mice. Progress in Clinical and Biological Research, 15, 251–257.
Messer, A., Maskin, P., & Mazurkiewicz, J. E. (1980). Effects of using a chemically defined medium for primary rat monolayer cerebellar cultures: Morphology, GABA uptake and kainic acid sensitivity. Brain Research, 184, 243–247.
Moonen, G., Cam, Y., Sensenbrenner, M., & Mandel, P. (1975). Variability of the effects of serum‐free medium, dibutyryl‐cyclic AMP or theophylline on the morphology of cultured new‐born rat astroblasts. Cell and Tissue Research, 163, 365–372.
Morken, T. S., Brekke, E., Haberg, A., Wideroe, M., Brubakk, A. M., & Sonnewald, U. (2014). Altered astrocyte‐neuronal interactions after hypoxia‐ischemia in the neonatal brain in female and male rats. Stroke, 45, 2777–2785.
Müller, M. S., Fouyssac, M., & Taylor, C. W. (2018). Effective glucose uptake by human astrocytes requires its sequestration in the endoplasmic reticulum by glucose‐6‐phosphatase‐beta. Current Biology, 28(3481–3486), e3484.
Müller, M. S., Fox, R., Schousboe, A., Waagepetersen, H. S., & Bak, L. K. (2014). Astrocyte glycogenolysis is triggered by store‐operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia, 62, 526–534.
Murin, R., Cesar, M., Kowtharapu, B. S., Verleysdonk, S., & Hamprecht, B. (2009). Expression of pyruvate carboxylase in cultured oligodendroglial, microglial and ependymal cells. Neurochemical Research, 34, 480–489.
Nadeau, O. W., Fontes, J. D., & Carlson, G. M. (2018). The regulation of glycogenolysis in the brain. The Journal of Biological Chemistry, 293, 7087–7088.
Nehlig, A. (1997). Cerebral energy metabolism, glucose transport and blood flow: Changes with maturation and adaptation to hypoglycaemia. Diabetes & Metabolism, 23, 18–29.
Nehlig, A., de Vasconcelos, A. P., & Boyet, S. (1988). Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. The Journal of Neuroscience, 8, 2321–2333.
Nehlig, A., & Pereira de Vasconcelos, A. (1993). Glucose and ketone body utilization by the brain of neonatal rats. Progress in Neurobiology, 40, 163–221.
Newman, L. A., Korol, D. L., & Gold, P. E. (2011). Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE, 6, e28427.
Norenberg, M. D., & Martinez‐Hernandez, A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Research, 161, 303–310. https://doi.org/10.1016/0006‐8993(79)90071‐4.
O'Dowd, B. S., Gibbs, M. E., Ng, K. T., Hertz, E., & Hertz, L. (1994). Astrocytic glycogenolysis energizes memory processes in neonate chicks. Brain Research. Developmental Brain Research, 78, 137–141.
Oe, Y., Baba, O., Ashida, H., Nakamura, K. C., & Hirase, H. (2016). Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns. Glia, 64, 1532–1545.
Ogushi, S., Lawson, J. W. R., Dobson, G. P., Veech, R. L., & Uyeda, K. (1990). A new transient activator of phosphofructokinase during initiation of rapid glycolysis in brain. The Journal of Biological Chemistry, 265, 10943–10949.
Olsen, G. M., & Sonnewald, U. (2015). Glutamate: Where does it come from and where does it go? Neurochemistry International, 88, 47–52.
Olstad, E., Olsen, G. M., Qu, H., & Sonnewald, U. (2007). Pyruvate recycling in cultured neurons from cerebellum. Journal of Neuroscience Research, 85, 3318–3325.
O'Neal, R. M., & Koeppe, R. E. (1966). Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. Journal of Neurochemistry, 13, 835–847.
Orzi, F., Lucignani, G., Dow‐Edwards, D., Namba, H., Nehlig, A., Patlak, C. S., Pettigrew, K., Schuier, F., & Sokoloff, L. (1988). Local cerebral glucose utilization in controlled graded levels of hyperglycemia in the conscious rat. Journal of Cerebral Blood Flow and Metabolism, 8, 346–356.
Ottersen, O. P., & Storm‐Mathisen, J. (1984). Glutamate‐ and GABA‐containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. The Journal of Comparative Neurology, 229, 374–392.
Ottersen, O. P., & Storm‐Mathisen, J. (1985). Different neuronal localization of aspartate‐like and glutamate‐like immunoreactivities in the hippocampus of rat, Guinea‐pig and Senegalese baboon (Papio papio), with a note on the distribution of gamma‐aminobutyrate. Neuroscience, 16, 589–606. https://doi.org/10.1016/0306‐4522(85)90194‐0.
Outlaw, W. H., Jr., & Lowry, O. H. (1979). Measurement of 10(−7) to 10(−12) Mol of potassium by stimulation of pyruvate kinase. Analytical Biochemistry, 92, 370–374.
Öz, G., Berkich, D. A., Henry, P. G., Xu, Y., LaNoue, K., Hutson, S. M., & Gruetter, R. (2004). Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. The Journal of Neuroscience, 24, 11273–11279.
Palaiologos, G., Hertz, L., & Schousboe, A. (1988). Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. Journal of Neurochemistry, 51, 317–320.
Panov, A., Orynbayeva, Z., Vavilin, V., & Lyakhovich, V. (2014). Fatty acids in energy metabolism of the central nervous system. BioMed Research International, 2014, 472459. https://doi.org/10.1155/2014/472459.
Patel, A. B., Lai, J. C., Chowdhury, G. M., Hyder, F., Rothman, D. L., Shulman, R. G., & Behar, K. L. (2014). Direct evidence for activity‐dependent glucose phosphorylation in neurons with implications for the astrocyte‐to‐neuron lactate shuttle. Proceedings of the National Academy of Sciences of the United States of America, 111, 5385–5390.
Patel, M. S. (1974). The effect of ketone bodies on pyruvate carboxylation by rat brain mitochondria. Journal of Neurochemistry, 23, 865–867.
Pellerin, L. (2018). Neuroenergetics: Astrocytes have a sweet spot for glucose. Current Biology, 28, R1258–R1260.
Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629.
Pellerin, L., & Magistretti, P. J. (2003). Food for thought: Challenging the dogmas. Journal of Cerebral Blood Flow and Metabolism, 23, 1282–1286.
Peng, L., & Hertz, L. (1993). Potassium‐induced stimulation of oxidative metabolism of glucose in cultures of intact cerebellar granule cells but not in corresponding cells with dendritic degeneration. Brain Research, 629, 331–334. https://doi.org/10.1016/0006‐8993(93)91341‐o.
Peng, L., Juurlink, B. H., & Hertz, L. (1996). Pharmacological and developmental evidence that the potassium‐induced stimulation of deoxyglucose uptake in astrocytes is a metabolic manifestation of increased Na(+)‐K(+)‐ATPase activity. Developmental Neuroscience, 18, 353–359.
Peng, L., Li, B., Du, T., Wang, F., & Hertz, L. (2012). Does conventional anti‐bipolar and antidepressant drug therapy reduce NMDA‐mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacology, Biochemistry, and Behavior, 100, 712–725.
Peng, L., Swanson, R. A., & Hertz, L. (2001). Effects of L‐glutamate, D‐aspartate, and monensin on glycolytic and oxidative glucose metabolism in mouse astrocyte cultures: Further evidence that glutamate uptake is metabolically driven by oxidative metabolism. Neurochemistry International, 38, 437–443.
Peng, L., Zhang, X., & Hertz, L. (1994). High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Research, 663, 168–172.
Peng, L. A., Schousboe, A., & Hertz, L. (1991). Utilization of alpha‐ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochemical Research, 16, 29–34.
Plaitakis, A., Berl, S., & Yahr, M. D. (1984). Neurological disorders associated with deficiency of glutamate dehydrogenase. Annals of Neurology, 15, 144–153.
Pontén, U., Ratcheson, R. A., Salford, L. G., & Siesjo, B. K. (1973). Optimal freezing conditions for cerebral metabolites in rats. Journal of Neurochemistry, 21, 1127–1138. https://doi.org/10.1111/j.1471‐4159.1973.tb07567.x.
Prats, C., Graham, T. E., & Shearer, J. (2018). The dynamic life of the glycogen granule. The Journal of Biological Chemistry, 293, 7089–7098.
Qin, S., Evering, M., Wahono, N., Cremers, T. I. F. H., & Westerink, B. H. C. (2013). Monitoring extracellular glutamate in the brain by microdialysis and microsensors. In S. Marinesco & N. Dale (Eds.), Microelectrode Biosensors (pp. 153–177). Humana Press.
Quach, T. T., Duchemin, A. M., Rose, C., & Schwartz, J. C. (1980). 3 H‐glycogen hydrolysis elicited by histamine in mouse brain slices: Selective involvement of H1 receptors. Molecular Pharmacology, 17, 301–308.
Quach, T. T., Duchemin, A. M., Rose, C., & Schwartz, J. C. (1981). Specific desensitization of histamine H1 receptor‐mediated [3H]glycogen hydrolysis in brain slices. Molecular Pharmacology, 20, 331–338.
Quach, T. T., Duchemin, A. M., Rose, C., & Schwartz, J. C. (1988). [3H]glycogenolysis in brain slices mediated by beta‐adrenoceptors: Comparison of physiological response and [3H]dihydroalprenolol binding parameters. Neuropharmacology, 27, 629–635.
Quach, T. T., Rose, C., Duchemin, A. M., & Schwartz, J. C. (1982). Glycogenolysis induced by serotonin in brain: Identification of a new class of receptor. Nature, 298, 373–375.
Quach, T. T., Rose, C., & Schwartz, J. C. (1978). [3H]glycogen hydrolysis in brain slices: Responses to neurotransmitters and modulation of noradrenaline receptors. Journal of Neurochemistry, 30, 1335–1341.
Quistorff, B., Secher, N. H., & Van Lieshout, J. J. (2008). Lactate fuels the human brain during exercise. The FASEB Journal, 22, 3443–3449.
Raizen, D. M., Brooks‐Kayal, A., Steinkrauss, L., Tennekoon, G. I., Stanley, C. A., & Kelly, A. (2005). Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. The Journal of Pediatrics, 146, 388–394. https://doi.org/10.1016/j.jpeds.2004.10.040.
Ramos, M., del Arco, A., Pardo, B., Martı́nez‐Serrano, A., Martı́nez‐Morales, J. R., Kobayashi, K., Yasuda, T., Bogónez, E., Bovolenta, P., Saheki, T., & Satrústegui, J. (2003). Developmental changes in the Ca2+‐regulated mitochondrial aspartate‐glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Brain Research. Developmental Brain Research, 143, 33–46.
Rao, V. L., & Murthy, C. R. (1992). Hyperammonemic alterations in the metabolism of glutamate and aspartate in rat cerebellar astrocytes. Neuroscience Letters, 138, 107–110.
Reichenbach, A., Derouiche, A., & Kirchhoff, F. (2010). Morphology and dynamics of perisynaptic glia. Brain Research Reviews, 63, 11–25.
Reynolds, G. P. (2004). Receptor mechanisms in the treatment of schizophrenia. Journal of Psychopharmacology, 18, 340–345.
Riera, J. J., Schousboe, A., Waagepetersen, H. S., Howarth, C., & Hyder, F. (2008). The micro‐architecture of the cerebral cortex: Functional neuroimaging models and metabolism. NeuroImage, 40, 1436–1459.
Roberg, B., Torgner, I. A., & Kvamme, E. (1995). The orientation of phosphate activated glutaminase in the inner mitochondrial membrane of synaptic and non‐synaptic rat brain mitochondria. Neurochemistry International, 27, 367–376.
Robinson, M. B., Djali, S., & Buchhalter, J. R. (1993). Inhibition of glutamate uptake with L‐trans‐pyrrolidine‐2,4‐dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. Journal of Neurochemistry, 61, 2099–2103.
Robinson, M. B., & Jackson, J. G. (2016). Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochemistry International, 98, 56–71. https://doi.org/10.1016/j.neuint.2016.03.014.
Rose, G. (1954). A separable and multipurpose tissue culture chamber. Texas Reports on Biology and Medicine, 12, 1074–1083.
Rothman, D. L., Behar, K. L., & Dienel, G. A. (2022). Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo‐malate‐aspartate shuttle model. Journal of Neurochemistry, 168, 555–591.
Rothman, D. L., Dienel, G. A., Behar, K. L., Hyder, F., DiNuzzo, M., Giove, F., & Mangia, S. (2022). Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. Journal of Cerebral Blood Flow and Metabolism, 42, 844–860.
Saez, I., Duran, J., Sinadinos, C., Beltran, A., Yanes, O., Tevy, M. F., Martínez‐Pons, C., Milán, M., & Guinovart, J. J. (2014). Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. Journal of Cerebral Blood Flow and Metabolism, 34, 945–955.
Sanacora, G., & Banasr, M. (2013). From pathophysiology to novel antidepressant drugs: Glial contributions to the pathology and treatment of mood disorders. Biological Psychiatry, 73, 1172–1179.
Scafidi, S., O'Brien, J., Hopkins, I., Robertson, C., Fiskum, G., & McKenna, M. (2009). Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. Journal of Neurochemistry, 109(Suppl 1), 189–197.
Schousboe, A. (2012). Studies of brain metabolism: A historical perspective. In I. Y. Choi & R. Gruetter (Eds.), Advances in neurobiology (Vol. 4, pp. 909–920). Springer.
Schousboe, A., Booher, J., & Hertz, L. (1970). Content of ATP in cultivated neurons and astrocytes exposed to balanced and potassium‐rich media. Journal of Neurochemistry, 17, 1501–1504. https://doi.org/10.1111/j.1471‐4159.1970.tb00517.x.
Schousboe, A., & Dienel, G. A. (2018). Obituary: Leif Hertz 1930–2018. Neurochemical Research, 43, 1140–1142.
Schousboe, A., & Hertz, L. (1981). Role of astroglial cells in glutamate homeostasis. Advances in Biochemical Psychopharmacology, 27, 103–113.
Schousboe, A., & Hertz, L. (1987). Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. II. Developmental aspects. In A. Vernadakis, A. Privat, J. M. Lauder, P. S. Timiras, & E. Giacobini (Eds.), Model systems of development and aging in the nervous system (pp. 33–42). Martinus Nijhoff Publishing.
Schousboe, A., Hertz, L., Svenneby, G., & Kvamme, E. (1979). Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. Journal of Neurochemistry, 32, 943–950.
Schousboe, A., Meier, E., Drejer, J., & Hertz, L. (1989). Preparation of primary cultures of mouse (rat) cerebellar granule cells. In A. Shahar, J. De Vellis, A. Vernadakis, & B. Haber (Eds.), A dissection and tissue culture manual for the nervous system (pp. 203–206). Alan R. Liss, Inc..
Schousboe, A., Nissen, C., Bock, E., Sapirstein, V. S., Juurlink, B. H. J., & Hertz, L. (1980). Biochemical development of rodent astrocytes in primary culture. In E. Giacobini, A. Vernadakis, & A. Shahar (Eds.), Tissue culture in neurobiology (pp. 397–409). Raven Press.
Schousboe, A., Scafidi, S., Bak, L. K., Waagepetersen, H. S., & McKenna, M. C. (2014). Glutamate metabolism in the brain focusing on astrocytes. Advances in Neurobiology, 11, 13–30.
Schousboe, A., Svenneby, G., & Hertz, L. (1977). Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. Journal of Neurochemistry, 29, 999–1005.
Schousboe, A., Westergaard, N., Sonnewald, U., Petersen, S. B., Huang, R., Peng, L., & Hertz, L. (1993). Glutamate and glutamine metabolism and compartmentation in astrocytes. Developmental Neuroscience, 15, 359–366. https://doi.org/10.1159/000111356.
Schuier, F., Orzi, F., Suda, S., Lucignani, G., Kennedy, C., & Sokoloff, L. (1990). Influence of plasma glucose concentration on lumped constant of the deoxyglucose method: Effects of hyperglycemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 10, 765–773.
Shank, R. P., & Aprison, M. H. (1979). Biochemical aspects of the neurotransmitter function of glutamate. In L. J. Filer, S. Garattini, M. R. Kare, W. A. Reyolds, & R. J. Wurtman (Eds.), Glutamic acid: Advances in biochemistry and physiology (pp. 139–150). Raven Press.
Shank, R. P., Baldy, W. J., & Ash, C. W. (1989). Glutamine and 2‐oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA: Correlation of regional uptake by rat brain synaptosomes. Neurochemical Research, 14, 371–376.
Shank, R. P., Bennett, G. S., Freytag, S. O., & Campbell, G. L. (1985). Pyruvate carboxylase: An astrocyte‐specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Research, 329, 364–367.
Shen, J., Sibson, N. R., Cline, G., Behar, K. L., Rothman, D. L., & Shulman, R. G. (1998). 15N‐NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Developmental Neuroscience, 20, 434–443.
Shimizu, N., & Kumamoto, T. (1952). Histochemical studies on the glycogen of the mammalian brain. The Anatomical Record, 114, 479–497.
Sibson, N. R., Dhankhar, A., Mason, G. F., Rothman, D. L., Behar, K. L., & Shulman, R. G. (1998). Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 316–321.
Sibson, N. R., Shen, J., Mason, G. F., Rothman, D. L., Behar, K. L., & Shulman, R. G. (1998). Functional energy metabolism: in vivo 13C‐NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronalactivity. Developmental Neuroscience, 20, 321–330.
Smith, A. J., Blumenfeld, H., Behar, K. L., Rothman, D. L., Shulman, R. G., & Hyder, F. (2002). Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. Proceedings of the National Academy of Sciences of the United States of America, 99, 10765–10770. https://doi.org/10.1073/pnas.132272199.
Sonnewald, U. (2014). Glutamate synthesis has to be matched by its degradation—Where do all the carbons go? Journal of Neurochemistry, 131, 399–406.
Sonnewald, U., Westergaard, N., Jones, P., Taylor, A., Bachelard, H. S., & Schousboe, A. (1996). Metabolism of [U‐13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: First evidence of astrocytic pyruvate recycling. Journal of Neurochemistry, 67, 2566–2572.
Sonnewald, U., Westergaard, N., Petersen, S. B., Unsgard, G., & Schousboe, A. (1993). Metabolism of [U‐13C]glutamate in astrocytes studied by 13C NMR spectroscopy: Incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. Journal of Neurochemistry, 61, 1179–1182.
Stahl, S. M. (1998). Mechanism of action of serotonin selective reuptake inhibitors: Serotonin receptors and pathways mediate therapeutic effects and side effects. Journal of Affective Disorders, 51, 215–235.
Stanley, C. A. (2011). Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochemistry International, 59, 465–472.
Storm‐Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F. M., & Ottersen, O. P. (1983). First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature, 301, 517–520.
Subbarao, K. V., & Hertz, L. (1990a). Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Research, 536, 220–226.
Subbarao, K. V., & Hertz, L. (1990b). Noradrenaline induced stimulation of oxidative metabolism in astrocytes but not in neurons in primary cultures. Brain Research, 527, 346–349.
Subbarao, K. V., Stolzenburg, J. U., & Hertz, L. (1995). Pharmacological characteristics of potassium‐induced, glycogenolysis in astrocytes. Neuroscience Letters, 196, 45–48.
Suda, S., Shinohara, M., Miyaoka, M., Lucignani, G., Kennedy, C., & Sokoloff, L. (1990). The lumped constant of the deoxyglucose method in hypoglycemia: Effects of moderate hypoglycemia on local cerebral glucose utilization in the rat. Journal of Cerebral Blood Flow and Metabolism, 10, 499–509. https://doi.org/10.1038/jcbfm.1990.92.
Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., & Alberini, C. M. (2011). Astrocyte‐neuron lactate transport is required for long‐term memory formation. Cell, 144, 810–823.
Swanson, R. A. (1992). Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Canadian Journal of Physiology and Pharmacology, 70(Suppl), S138–S144.
Swanson, R. A., Morton, M. M., Sagar, S. M., & Sharp, F. R. (1992). Sensory stimulation induces local cerebral glycogenolysis: Demonstration by autoradiography. Neurosci., 51, 451–461.
Takahashi, S., Driscoll, B. F., Law, M. J., & Sokoloff, L. (1995). Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proceedings of the National Academy of Sciences of the United States of America, 92, 4616–4620.
Takahashi, S., Izawa, Y., & Suzuki, N. (2012). Astroglial pentose phosphate pathway rates in response to high‐glucose environments. ASN Neuro, 4, AN20120002. https://doi.org/10.1042/an20120002.
Takeda, K., & Ueda, T. (2017). Effective mechanism for synthesis of neurotransmitter glutamate and its loading into synaptic vesicles. Neurochemical Research, 42, 64–76.
Tansey, F. A., Farooq, M., & Cammer, W. (1991). Glutamine synthetase in oligodendrocytes and astrocytes: New biochemical and immunocytochemical evidence. Journal of Neurochemistry, 56, 266–272.
Torres, F. V., Hansen, F., & Locks‐Coelho, L. D. (2013). Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: Reversible by TFB‐TBOA. Journal of Neuroscience Research, 91, 1059–1065. https://doi.org/10.1002/jnr.23187.
Tsukada, Y., Kanamatsu, T., Watanabe, H., & Okamoto, K. (1998). In vivo investigation of glutamate–glutamine metabolism in hyperammonemic monkey brain using 13C‐magnetic resonance spectroscopy. Developmental Neuroscience, 20, 427–433.
Ueda, T. (2016). Vesicular glutamate uptake. Advances in Neurobiology, 13, 173–221.
Van den Berg, C. J., Krzalic, L., Mela, P., & Waelsch, H. (1969). Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. The Biochemical Journal, 113, 281–290.
Vannucci, S. J., & Simpson, I. A. (2003). Developmental switch in brain nutrient transporter expression in the rat. American Journal of Physiology. Endocrinology and Metabolism, 285, E1127–E1134.
Veech, R. L., Harris, R. L., Veloso, D., & Veech, E. H. (1973). Freeze‐blowing: A new technique for the study of brain in vivo. Journal of Neurochemistry, 20, 183–188.
Veiga‐da‐Cunha, M., Chevalier, N., Stephenne, X., Defour, J. P., Paczia, N., Ferster, A., Achouri, Y., Dewulf, J. P., Linster, C. L., Bommer, G. T., & van Schaftingen, E. (2019). Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 116, 1241–1250.
Waagepetersen, H. S., Sonnewald, U., Larsson, O. M., & Schousboe, A. (2000). A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. Journal of Neurochemistry, 75, 471–479. https://doi.org/10.1046/j.1471‐4159.2000.0750471.x.
Walz, W., Hertz, E., & Hertz, L. (1983). Lithium‐potassium interaction in acutely treated cortical neurons and astrocytes. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 7, 697–702.
Walz, W., & Hertz, L. (1982). Acute and chronic effects of lithium in therapeutically relevant concentrations on potassium uptake into astrocytes. Psychopharmacology, 78, 309–313.
Walz, W., & Mukerji, S. (1988a). Lactate production and release in cultured astrocytes. Neuroscience Letters, 86, 296–300.
Walz, W., & Mukerji, S. (1988b). Lactate release from cultured astrocytes and neurons: A comparison. Glia, 1, 366–370.
Westergaard, N., Drejer, J., Schousboe, A., & Sonnewald, U. (1996). Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U‐13C]glutamate. Glia, 17, 160–168.
Whitelaw, B. S., & Robinson, M. B. (2013). Inhibitors of glutamate dehydrogenase block sodium‐dependent glutamate uptake in rat brain membranes. Frontiers in Endocrinology (Lausanne), 4, 123.
Wolfson, M., Bersudsky, Y., Zinger, E., Simkin, M., Belmaker, R. H., & Hertz, L. (2000). Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Research, 855, 158–161.
Wolfson, M., Hertz, E., Belmaker, R. H., & Hertz, L. (1998). Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Research, 787, 34–40. https://doi.org/10.1016/s0006‐8993(97)00775‐0.
Wood, J. D., & Hertz, L. (1980). Ketamine‐induced changes in the GABA system of mouse brain. Neuropharmacology, 19, 805–808.
Xin, W., Mironova, Y. A., Shen, H., Marino, R. A. M., Waisman, A., Lamers, W. H., Bergles, D. E., & Bonci, A. (2019). Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine Synthetase. Cell Reports, 27, 2262–2271.e2265.
Xu, J., Song, D., Bai, Q., Cai, L., Hertz, L., & Peng, L. (2014). Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochemical Research, 39, 661–667.
Xu, J., Song, D., Bai, Q., Zhou, L., Cai, L., Hertz, L., & Peng, L. (2014). Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro, 6, e00132.
Xu, J., Song, D., Xue, Z., Gu, L., Hertz, L., & Peng, L. (2013). Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: Potential implications for K+ homeostasis and glycogen usage in brain. Neurochemical Research, 38, 472–485. https://doi.org/10.1007/s11064‐012‐0938‐3.
Yellen, G. (2018). Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. The Journal of Cell Biology, 217, 2235–2246.
Yu, A. C., Drejer, J., Hertz, L., & Schousboe, A. (1983). Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. Journal of Neurochemistry, 41, 1484–1487. https://doi.org/10.1111/j.1471‐4159.1983.tb00849.x.
Yu, A. C., Hertz, E., & Hertz, L. (1984). Alterations in uptake and release rates for GABA, glutamate, and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. Journal of Neurochemistry, 42, 951–960.
Yu, A. C., & Hertz, L. (1982). Uptake of glutamate, GABA, and glutamine into a predominantly GABA‐ergic and a predominantly glutamatergic nerve cell population in culture. Journal of Neuroscience Research, 7, 23–35.
Yu, A. C., Schousboe, A., & Hertz, L. (1982). Metabolic fate of 14C‐labeled glutamate in astrocytes in primary cultures. Journal of Neurochemistry, 39, 954–960.
Yu, A. C. H., & Hertz, L. (1983). Metabolic sources of energy in astrocytes. In L. Hertz, E. Kvamme, E. G. McGeer, & A. Schousboe (Eds.), Glutamine, glutamate, and GABA in the central nervous system (pp. 431–438). Alan R, Liss, Inc..
Yu, Y., Herman, P., Rothman, D. L., Agarwal, D., & Hyder, F. (2018). Evaluating the gray and white matter energy budgets of human brain function. Journal of Cerebral Blood Flow and Metabolism, 38, 1339–1353. https://doi.org/10.1177/0271678X17708691.
Zhang, S., Li, B., Lovatt, D., Xu, J., Song, D., Goldman, S. A., Nedergaard, M., Hertz, L., & Peng, L. (2010). 5‐HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional “serotonin‐specific reuptake inhibitors”. Neuron Glia Biology, 6, 113–125. https://doi.org/10.1017/S1740925X10000141.
Zhang, X., Peng, L., Chen, Y., & Hertz, L. (1993). Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5‐HT. Neuroreport, 4, 1235–1238.
Zhang, Y., Xue, Y., Meng, S., Luo, Y., Liang, J., Li, J., Ai, S., Sun, C., Shen, H., Zhu, W., Wu, P., Lu, L., & Shi, J. (2016). Inhibition of lactate transport erases drug memory and prevents drug relapse. Biological Psychiatry, 79, 928–929.
Zhao, Z., Hertz, L., & Code, W. E. (1996). Effects of benzodiazepines on potassium‐induced increase in free cytosolic calcium concentration in astrocytes: Interactions with nifedipine and the peripheral‐type benzodiazepine antagonist PK 11195. Canadian Journal of Physiology and Pharmacology, 74, 273–277.
Zielke, H. R., Zielke, C. L., & Baab, P. J. (2009). Direct measurement of oxidative metabolism in the living brain by microdialysis: A review. Journal of Neurochemistry, 109(Suppl 1), 24–29. https://doi.org/10.1111/j.1471‐4159.2009.05941.x.
Ziemińska, E., Hilgier, W., Waagepetersen, H. S., Hertz, L., Sonnewald, U., Schousboe, A., & Albrecht, J. (2004). Analysis of glutamine accumulation in rat brain mitochondria in the presence of a glutamine uptake inhibitor, histidine, reveals glutamine pools with a distinct access to deamidation. Neurochemical Research, 29, 2121–2123. https://doi.org/10.1007/s11064‐004‐6885‐x.
معلومات مُعتمدة: P01HD085928 MCM; R01MH109159 DLR; R01NS087568 DLR; R01NS100106 DLR
فهرسة مساهمة: Keywords: Glu/GABA–Gln cycle; astrocyte and neuron cell culture; astrocytic metabolism and energetics; astrocytic pharmacology; cellular maturation in vitro; glycogen
تواريخ الأحداث: Date Created: 20230317 Date Completed: 20240518 Latest Revision: 20240613
رمز التحديث: 20240614
DOI: 10.1111/jnc.15812
PMID: 36928655
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-4159
DOI:10.1111/jnc.15812