دورية أكاديمية

Prognostic significance of the genetic variant of lymphotoxin alpha (p.Thr60Asn) in egyptian patients with advanced hepatocellular carcinoma.

التفاصيل البيبلوغرافية
العنوان: Prognostic significance of the genetic variant of lymphotoxin alpha (p.Thr60Asn) in egyptian patients with advanced hepatocellular carcinoma.
المؤلفون: Alhelf M; Biotechnology School, Nile University, Giza, Egypt.; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Giza, Egypt., Shoaib RMS; Food and Dairy Sciences and Technology Department, Faculty of Environmental Agricultural Sciences, Arish University, 45511, North Sinai, Egypt. rashashoaib83@yahoo.com., Elsaid A; Genetics Unit, Mansoura University, Children Hospital, Mansoura, Egypt., Bastawy N; Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt., Elbeltagy NS; Department of Laboratories, Faculty of Medicine, Mansoura University, Children Hospital, Mansoura, Egypt., Salem ET; Department of Basic Science, Faculty of Physical Therapy, Horus University, Damietta, Egypt., Refaat S; Oncology Center, Mansoura University, Mansoura, Egypt., Abuelnadar EH; Department of Laboratories, Faculty of Medicine, Mansoura University, Children Hospital, Mansoura, Egypt.
المصدر: Molecular biology reports [Mol Biol Rep] 2023 May; Vol. 50 (5), pp. 4317-4327. Date of Electronic Publication: 2023 Mar 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Carcinoma, Hepatocellular*/genetics , Liver Neoplasms*/genetics, Humans ; Lymphotoxin-alpha/genetics ; Prognosis ; Case-Control Studies ; Egypt ; Genotype ; Genetic Predisposition to Disease ; Polymorphism, Single Nucleotide/genetics
مستخلص: Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide in terms of mortality, and susceptibility is attributed to genetic, lifestyle, and environmental factors. Lymphotoxin alpha (LTA) has a crucial role in communicating the lymphocytes with stromal cells and provoking cytotoxic effects on the cancer cells. There are no reports on the contribution of the LTA (c.179 C>A; p.Thr60Asn; rs1041981) gene polymorphism to HCC susceptibility. The main aim of this study is to investigate the association of LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant with the HCC risk in the Egyptian population.
Methods: This case-control study included 317 participants (111 HCC patients, and 206 healthy controls). The LTA (c.179 C>A; p.Thr60Asn; rs1041981) polymorphism was assessed by tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) technique.
Results: The frequencies of the dominant and recessive models (CA + AA; AA) of the LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant were statistically significant among HCC patients in comparison to controls (p = 0.01; p = 0.007; respectively). The A-allele of LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant was statistically significant in HCC patients in comparison to controls (p ˂ 0.001).
Conclusion: The LTA (c.179 C>A; p.Thr60Asn; rs1041981) polymorphism was independently associated with an increased risk for hepatocellular carcinoma in the Egyptian population.
(© 2023. The Author(s).)
References: Rashed WM, Kandeil MAM, Mahmoud MO, Ezzat S (2020) Hepatocellular Carcinoma (HCC) in Egypt: a comprehensive overview. J Egypt Natl Cancer Inst 32:5. https://doi.org/10.1186/s43046-020-0016-x. (PMID: 10.1186/s43046-020-0016-x)
Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD (2008) Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 14:4300–4308. https://doi.org/10.3748/wjg.14.4300. (PMID: 10.3748/wjg.14.4300186663172731180)
Qin LX, Tang ZY (2002) The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 8:385–392. https://doi.org/10.3748/wjg.v8.i3.385. (PMID: 10.3748/wjg.v8.i3.385120460564656407)
Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883 – 99. https://doi.org/10.1016/j.cell.2010.01.025.
Upadhyay V, Fu YX (2013) Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nat Rev Immunol 13:270–279. https://doi.org/10.1038/nri3406. (PMID: 10.1038/nri3406235244633900493)
Calmon-Hamaty F, Combe B, Hahne M, Morel J (2011) Lymphotoxin α revisited: general features and implications in rheumatoid arthritis. Arthritis Res Ther 13:232. https://doi.org/10.1186/ar3376. (PMID: 10.1186/ar3376218618663239340)
Gommerman JL, Browning JL (2003) Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3:642–655. https://doi.org/10.1038/nri1151. (PMID: 10.1038/nri115112974479)
Medvedev AE, Espevik T, Ranges G, Sundan A (1996) Distinct roles of the two tumor necrosis factor (TNF) receptors in modulating TNF and lymphotoxin alpha effects. J Biol Chem 271:9778–9784. https://doi.org/10.1074/jbc.271.16.9778. (PMID: 10.1074/jbc.271.16.97788621658)
Spahn TW, Müller MK, Domschke W, Kucharzik T (2006) Role of lymphotoxins in the development of Peyer’s patches and mesenteric lymph nodes: relevance to intestinal inflammation and treatment. Ann N Y Acad Sci 1072:187–193. https://doi.org/10.1196/annals.1326.029. (PMID: 10.1196/annals.1326.02917057199)
Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756. https://doi.org/10.1038/nri1184. (PMID: 10.1038/nri118412949498)
Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23:787–819. https://doi.org/10.1146/annurev.immunol.23.021704.115719. (PMID: 10.1146/annurev.immunol.23.021704.11571915771586)
Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG (2005) Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22:439–450. https://doi.org/10.1016/j.immuni.2005.02.007. (PMID: 10.1016/j.immuni.2005.02.00715845449)
Müller U, Jongeneel CV, Nedospasov SA, Lindahl KF, Steinmetz M (1987) Tumour necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex. Nature 325:265–267. https://doi.org/10.1038/325265a0. (PMID: 10.1038/325265a03027565)
Laddha NC, Dwivedi M, Gani AR, Mansuri MS, Begum R (2013) Tumor necrosis factor B (TNFB) genetic variants and its increased expression are associated with vitiligo susceptibility. PLoS ONE 8:e81736. https://doi.org/10.1371/journal.pone.0081736. (PMID: 10.1371/journal.pone.0081736243123463842287)
Nahon P, Zucman-Rossi J (2012) Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J Hepatol 57:663–674. https://doi.org/10.1016/j.jhep.2012.02.035. (PMID: 10.1016/j.jhep.2012.02.03522609306)
Tan JH, Temple SE, Kee C, Waterer GW, Tan CR, Gut I, Price P (2011) Characterisation of TNF block haplotypes affecting the production of TNF and LTA. Tissue Antigens 77:100–106. https://doi.org/10.1111/j.1399-0039.2010.01582.x. (PMID: 10.1111/j.1399-0039.2010.01582.x21214521)
Messer G, Spengler U, Jung MC, Honold G, Blömer K, Pape GR, Riethmüller G, Weiss EH (1991) Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med 173:209–219. https://doi.org/10.1084/jem.173.1.209. (PMID: 10.1084/jem.173.1.2091670638)
Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654. https://doi.org/10.1038/ng1047. (PMID: 10.1038/ng104712426569)
Moore KP, Aithal GP (2006) Guidelines on the management of ascites in cirrhosis. Gut 55 Suppl 6:vi1–12. https://doi.org/10.1136/gut.2006.099580. (PMID: 10.1136/gut.2006.099580)
Niwa Y, Ito H, Matsuo K, Hirose K, Ito N, Mizuno M, Hamajima N, Tajima K, Nakanishi T (2007) Lymphotoxin-alpha polymorphisms and the risk of endometrial cancer in japanese subjects. Gynecol Oncol 104:586–590. https://doi.org/10.1016/j.ygyno.2006.09.007. (PMID: 10.1016/j.ygyno.2006.09.00717045328)
Yu L-X, Ling Y, Wang H-Y (2018) Role of nonresolving inflammation in hepatocellular carcinoma development and progression. npj Precision Oncology 2:6. https://doi.org/10.1038/s41698-018-0048-z. (PMID: 10.1038/s41698-018-0048-z298727245871907)
Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80:1197–1213. https://doi.org/10.1189/jlb.0506297. (PMID: 10.1189/jlb.050629716946019)
An PP, Feng LN, Zhang XX, Jin QL (2020) Association of interleukin-6 gene polymorphisms with the risk of hepatocellular carcinoma: an up-to-date meta-analysis. Med (Baltim) 99:e23659. https://doi.org/10.1097/md.0000000000023659. (PMID: 10.1097/md.0000000000023659)
Amer T, El-Baz R, Mokhtar AR, El-Shaer S, Elshazli R, Settin A (2017) Genetic polymorphisms of IL-23R (rs7517847) and LEP (rs7799039) among egyptian patients with hepatocellular carcinoma. Arch Physiol Biochem 123:279–285. https://doi.org/10.1080/13813455.2017.1320680. (PMID: 10.1080/13813455.2017.132068028452232)
Wei YG, Liu F, Li B, Chen X, Ma Y, Yan LN, Wen TF, Xu MQ, Wang WT, Yang JY (2011) Interleukin-10 gene polymorphisms and hepatocellular carcinoma susceptibility: a meta-analysis. World J Gastroenterol 17:3941–3947. https://doi.org/10.3748/wjg.v17.i34.3941. (PMID: 10.3748/wjg.v17.i34.3941220258833198024)
Li J, Wang Y, Chang X, Han Z (2020) The effect of LTA gene polymorphisms on cancer risk: an updated systematic review and meta- analysis. Biosci Rep 40. https://doi.org/10.1042/bsr20192320.
Lee S-G, Kim B, Yook J-H, Oh S-T, Lee I, Song K (2004) TNF/LTA polymorphisms and risk for gastric cancer/duodenal ulcer in the korean population. Cytokine 28:75–82. https://doi.org/10.1016/j.cyto.2004.06.009. (PMID: 10.1016/j.cyto.2004.06.00915381184)
Niwa Y, Hirose K, Matsuo K, Tajima K, Ikoma Y, Nakanishi T, Nawa A, Kuzuya K, Tamakoshi A, Hamajima N (2005) Lymphotoxin-α polymorphism and the risk of cervical cancer in japanese subjects. Cancer Lett 218:63–68. https://doi.org/10.1016/j.canlet.2004.09.021. (PMID: 10.1016/j.canlet.2004.09.02115639341)
Madeleine MM, Johnson LG, Malkki M, Resler AJ, Petersdorf EW, McKnight B, Malone KE (2011) Genetic variation in proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and risk of breast cancer. Breast Cancer Res Treat 129:887–899. https://doi.org/10.1007/s10549-011-1520-4. (PMID: 10.1007/s10549-011-1520-4215234523164911)
Mahajan R, El-Omar EM, Lissowska J, Grillo P, Rabkin CS, Baccarelli A, Yeager M, Sobin LH, Zatonski W, Channock SJ, Chow W-H, Hou L (2008) Genetic variants in T helper cell type 1, 2 and 3 pathways and gastric Cancer risk in a Polish Population. Jpn J Clin Oncol 38:626–633. https://doi.org/10.1093/jjco/hyn075. (PMID: 10.1093/jjco/hyn075186877552528891)
Wang SS, Purdue MP, Cerhan JR, Zheng T, Menashe I, Armstrong BK, Lan Q, Hartge P, Kricker A, Zhang Y, Morton LM, Vajdic CM, Holford TR, Severson RK, Grulich A, Leaderer BP, Davis S, Cozen W, Yeager M, Chanock SJ, Chatterjee N, Rothman N (2009) Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-kB transcription factors and non-hodgkin lymphoma risk. PLoS ONE 4:e5360. https://doi.org/10.1371/journal.pone.0005360. (PMID: 10.1371/journal.pone.0005360193906832669130)
Niwa Y, Hirose K, Matsuo K, Tajima K, Ikoma Y, Nakanishi T, Nawa A, Kuzuya K, Tamakoshi A, Hamajima N (2005) Lymphotoxin-alpha polymorphism and the risk of cervical cancer in japanese subjects. Cancer Lett 218:63–68. https://doi.org/10.1016/j.canlet.2004.09.021. (PMID: 10.1016/j.canlet.2004.09.02115639341)
Abbas S, Beckmann L, Chang-Claude J, Hein R, Kropp S, Parthimos M, Dünnebier T, Hamann U, Brors B, Eils R, Zapatka M, Brauch H, Justenhoven C, Flesch-Janys D, Brüning T, Pesch B, Spickenheuer A, Baisch C, Ko Y, Dahmen N (2010) Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women. Breast Cancer Res Treat 120:727–736. https://doi.org/10.1007/s10549-009-0489-8. (PMID: 10.1007/s10549-009-0489-8)
Castro FA, Haimila K, Sareneva I, Schmitt M, Lorenzo J, Kunkel N, Kumar R, Försti A, Kjellberg L, Hallmans G, Lehtinen M, Hemminki K, Pawlita M (2009) Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the swedish population–a candidate gene approach. Int J Cancer 125:1851–1858. https://doi.org/10.1002/ijc.24529. (PMID: 10.1002/ijc.2452919585495)
Sainz J, Rudolph A, Hoffmeister M, Frank B, Brenner H, Chang-Claude J, Hemminki K, Försti A (2012) Effect of type 2 diabetes predisposing genetic variants on colorectal cancer risk. J Clin Endocrinol Metab 97:E845–851. https://doi.org/10.1210/jc.2011-2565. (PMID: 10.1210/jc.2011-256522419714)
Quan L, Gong Z, Yao S, Bandera EV, Zirpoli G, Hwang H, Roberts M, Ciupak G, Davis W, Sucheston L, Pawlish K, Bovbjerg DH, Jandorf L, Cabasag C, Coignet JG, Ambrosone CB, Hong CC (2014) Cytokine and cytokine receptor genes of the adaptive immune response are differentially associated with breast cancer risk in american women of african and european ancestry. Int J Cancer 134:1408–1421. https://doi.org/10.1002/ijc.28458. (PMID: 10.1002/ijc.2845823996684)
Liu M, Jiang L, Guan XY (2014) The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 5:673–691. https://doi.org/10.1007/s13238-014-0065-9. (PMID: 10.1007/s13238-014-0065-9249164404145080)
Takei K, Ikeda S, Arai T, Tanaka N, Muramatsu M, Sawabe M (2008) Lymphotoxin-alpha polymorphisms and presence of cancer in 1,536 consecutive autopsy cases. BMC Cancer 8:235. https://doi.org/10.1186/1471-2407-8-235. (PMID: 10.1186/1471-2407-8-235187009502527017)
Ware CF, Crowe PD, Grayson MH, Androlewicz MJ, Browning JL (1992) Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural killer cells. J Immunol 149:3881–3888. (PMID: 10.4049/jimmunol.149.12.38811281193)
Rangel-Moreno J, Carragher D, Randall TD (2007) Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract. Inmunologia 26:13–28. (PMID: 205520392884405)
Paul S, Lal G (2017) The molecular mechanism of natural killer cells function and its importance in Cancer Immunotherapy. Front Immunol 8:1124. https://doi.org/10.3389/fimmu.2017.01124. (PMID: 10.3389/fimmu.2017.01124289553405601256)
Ito D, Back TC, Shakhov AN, Wiltrout RH, Nedospasov SA (1999) Mice with a targeted mutation in lymphotoxin-alpha exhibit enhanced tumor growth and metastasis: impaired NK cell development and recruitment. J Immunol 163:2809–2815. (PMID: 10.4049/jimmunol.163.5.280910453025)
Smyth MJ, Johnstone RW, Cretney E, Haynes NM, Sedgwick JD, Korner H, Poulton LD, Baxter AG (1999) Multiple deficiencies underlie NK cell inactivity in lymphotoxin-alpha gene-targeted mice. J Immunol 163:1350–1353. (PMID: 10.4049/jimmunol.163.3.135010415034)
Ferjančič Å, Gil-Bernabé AM, Hill SA, Allen PD, Richardson P, Sparey T, Savory E, McGuffog J, Muschel RJ (2013) VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 121:3289–3297. https://doi.org/10.1182/blood-2012-08-449819. (PMID: 10.1182/blood-2012-08-44981923407548)
Li J, Ma S, Shao L, Ma C, Gao C, Zhang XH, Hou M, Peng J (2017) Inflammation-related gene polymorphisms Associated with Primary Immune Thrombocytopenia. Front Immunol 8:744. https://doi.org/10.3389/fimmu.2017.00744. (PMID: 10.3389/fimmu.2017.00744287020295487479)
Matzaraki V, Kumar V, Wijmenga C, Zhernakova A (2017) The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 18:76. https://doi.org/10.1186/s13059-017-1207-1. (PMID: 10.1186/s13059-017-1207-1284496945406920)
Goyal A, Kazim SN, Sakhuja P, Malhotra V, Arora N, Sarin SK (2004) Association of TNF-beta polymorphism with disease severity among patients infected with hepatitis C virus. J Med Virol 72:60–65. https://doi.org/10.1002/jmv.10533. (PMID: 10.1002/jmv.1053314635012)
Suneetha PV, Sarin SK, Goyal A, Kumar GT, Shukla DK, Hissar S (2006) Association between vitamin D receptor, CCR5, TNF-alpha and TNF-beta gene polymorphisms and HBV infection and severity of liver disease. J Hepatol 44:856–863. https://doi.org/10.1016/j.jhep.2006.01.028. (PMID: 10.1016/j.jhep.2006.01.02816545485)
Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665. https://doi.org/10.1182/blood-2011-04-325225. (PMID: 10.1182/blood-2011-04-325225220531093265196)
Luedde T, Schwabe RF (2011) NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118. https://doi.org/10.1038/nrgastro.2010.213. (PMID: 10.1038/nrgastro.2010.213212935113295539)
فهرسة مساهمة: Keywords: Hepatocellular carcinoma; LTA, Gene polymorphism; Lymphotoxin alpha
المشرفين على المادة: 0 (Lymphotoxin-alpha)
تواريخ الأحداث: Date Created: 20230317 Date Completed: 20230501 Latest Revision: 20230524
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10147750
DOI: 10.1007/s11033-023-08281-z
PMID: 36929286
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-023-08281-z