دورية أكاديمية

Toxicity of antifouling biocides on planktonic and benthic neotropical species.

التفاصيل البيبلوغرافية
العنوان: Toxicity of antifouling biocides on planktonic and benthic neotropical species.
المؤلفون: Perina FC; Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil. perinafc@ua.pt.; CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal. perinafc@ua.pt., Abessa DMS; Instituto de Biociências. Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, 11330-900, Brazil., Pinho GLL; Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália S/N, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil., Castro ÍB; Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.; Instituto do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, 11070-100, Brazil., Fillmann G; Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil. gfillmann@gmail.com.; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália S/N, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil. gfillmann@gmail.com.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 May; Vol. 30 (22), pp. 61888-61903. Date of Electronic Publication: 2023 Mar 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Disinfectants*/toxicity , Disinfectants*/analysis , Biofouling*/prevention & control , Water Pollutants, Chemical*/toxicity , Water Pollutants, Chemical*/analysis , Amphipoda*, Animals ; Diuron/toxicity ; Diuron/analysis ; Plankton ; Aquatic Organisms ; Environmental Monitoring ; Triazines/analysis
مستخلص: Organotin-based (OTs: TBT and TPT) antifouling paints have been banned worldwide, but recent inputs have been detected in tropical coastal areas. However, there is a lack of studies evaluating the toxicity of both legacy and their substitute antifouling booster biocides (e.g., Irgarol and diuron) on neotropical species. Therefore, the acute toxicity of four antifouling biocides (TBT, TPT, Irgarol, and diuron) was investigated using the marine planktonic organisms Acartia tonsa and Mysidopsis juniae, the estuarine tanaid Monokalliapseudes schubarti (water exposure), and the burrowing amphipod Tiburonella viscana (spiked sediment exposure). Results confirmed the high toxicity of the OTs, especially to planktonic species, being about two orders of magnitude higher than Irgarol and diuron. Toxic effects of antifouling compounds were observed at levels currently found in tropical coastal zones, representing a threat to planktonic and benthic invertebrates. Furthermore, deterministic PNEC marine sediment values suggest that environmental hazards in tropical regions may be higher due to the higher sensitivity of tropical organisms. Since regulations on antifouling biocides are still restricted to a few countries, more ecotoxicological studies are needed to derivate environmental quality standards based on realistic scenarios. The present study brings essential contributions regarding the ecological risks of these substances in tropical and subtropical zones.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abbott WS (1925) A Method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267. (PMID: 10.1093/jee/18.2.265a)
ABNT [Associação Brasileira de Normas Técnicas] (2011) NBR 15308 Ecotoxicologia aquática —Toxicidade aguda — Método de ensaio com misídeos (Crustacea) [Aquatic ecotoxicology — Acute toxicity — Method of test mysids (Crustacea)]. Rio de Janeiro, RJ, Brazil, p 19.
ABNT [Associação Brasileira de Normas Técnicas] (2015) NBR 15638 Ecotoxicologia aquática — Toxicidade aguda — Método de ensaio com anfípodos marinhos e estuarinos em sedimentos [Aquatic ecotoxicology — Acute toxicity — Test method in sediment with marine and estuarine amphipods]. Rio de Janeiro, RJ, Brazil, p 19.
Abou-Setta MM, Sorrell RW, Childers CC (1986) A computer program in BASIC for determining probit and log-probit or logit correlation for toxicology and biology. Bull Environ Contam Toxicol 36:242–249. (PMID: 10.1007/BF01623502)
Abreu FEL, Martins SE, Fillmann G (2021) Ecological risk assessment of booster biocides in sediments of the Brazilian coastal areas. Chemosphere 276:130155. https://doi.org/10.1016/j.chemosphere.2021.130155. (PMID: 10.1016/j.chemosphere.2021.130155)
Abreu FEL, Batista RM, Castro ÍB, Fillmann G (2021) Legacy and emerging antifouling biocide residues in a tropical estuarine system (Espirito Santo state, SE, Brazil). Mar Pollut Bull 166:112255. https://doi.org/10.1016/j.marpolbul.2021.112255. (PMID: 10.1016/j.marpolbul.2021.112255)
Abreu FEL, Lima da Silva JN, Castro ÍB, Fillmann G (2020) Are antifouling residues a matter of concern in the largest South American port? J Hazard Mater 398:122937. https://doi.org/10.1016/j.jhazmat.2020.122937. (PMID: 10.1016/j.jhazmat.2020.122937)
Ali HR, Ariffin MM, Omar TFT et al (2021) Antifouling paint biocides (Irgarol 1051 and diuron) in the selected ports of Peninsular Malaysia: occurrence, seasonal variation, and ecological risk assessment. Environ Sci Pollut Res 28:52247–52257. https://doi.org/10.1007/s11356-021-14424-1. (PMID: 10.1007/s11356-021-14424-1)
Almeida E, Diamantino TC, Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coatings 59:2–20. https://doi.org/10.1016/j.porgcoat.2007.01.017. (PMID: 10.1016/j.porgcoat.2007.01.017)
Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102. https://doi.org/10.1016/S0048-9697(00)00510-6. (PMID: 10.1016/S0048-9697(00)00510-6)
Amara I, Miled W, Ben SR, Ladhari N (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment A review. Environ Toxicol Pharmacol 57:115–130. https://doi.org/10.1016/j.etap.2017.12.001. (PMID: 10.1016/j.etap.2017.12.001)
Anastasiou TI, Chatzinikolaou E, Mandalakis M, Arvanitidis C (2016) Imposex and organotin compounds in ports of the Mediterranean and the Atlantic: is the story over? Sci Total Environ 569–570:1315–1329. https://doi.org/10.1016/j.scitotenv.2016.06.209. (PMID: 10.1016/j.scitotenv.2016.06.209)
Ansanelli G, Manzo S, Parrella L et al (2017) Antifouling biocides (Irgarol, Diuron and dichlofluanid) along the Italian Tyrrhenian coast: temporal, seasonal and spatial threats. Reg Stud Mar Sci 16:254–266. https://doi.org/10.1016/j.rsma.2017.09.011. (PMID: 10.1016/j.rsma.2017.09.011)
Artifon V, Zanardi-Lamardo E, Fillmann G (2019) Aquatic organic matter: classification and interaction with organic microcontaminants. Sci Total Environ 649:1620–1635. https://doi.org/10.1016/j.scitotenv.2018.08.385. (PMID: 10.1016/j.scitotenv.2018.08.385)
ASTM [American Society for Testing and Materials] (2008) Standard guide for collection, storage, characterization, and manipulation of sediments for toxicological testing and for selection of samplers used to collect benthic invertebrates. E 1391 – 03. ASTM International, West Conshohocken, PA, USA, p 94.
Bao VWW, Leung KMY, Qiu JW, Lam MHW (2011) Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull 62:1147–1151. https://doi.org/10.1016/j.marpolbul.2011.02.041. (PMID: 10.1016/j.marpolbul.2011.02.041)
Bao VWW, Lui GCS, Leung KMY (2013) Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Aquat Toxicol 157:81–93. https://doi.org/10.1016/j.aquatox.2014.09.013. (PMID: 10.1016/j.aquatox.2014.09.013)
Basheeru KA, Okoro HK, Adekola FA, Abdus-Salam N (2020) Speciation and quantification of organotin compounds in Lagos harbour, Nigeria. Int J Environ Anal Chem 00:1–20. https://doi.org/10.1080/03067319.2020.1849647. (PMID: 10.1080/03067319.2020.1849647)
Batista-Andrade JA, Caldas SS, Batista RM et al (2018) From TBT to booster biocides: levels and impacts of antifouling along coastal areas of Panama. Environ Pollut 234:243–252. https://doi.org/10.1016/j.envpol.2017.11.063. (PMID: 10.1016/j.envpol.2017.11.063)
Biselli S, Bester K, Hühnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar Pollut Bull 40:233–243. https://doi.org/10.1016/S0025-326X(99)00177-0. (PMID: 10.1016/S0025-326X(99)00177-0)
Bushong SJ, Hall LW, Scott Hall W et al (1988) Acute toxicity of tributyltin to selected Chesapeake Bay fish and invertebrates. Water Res 22:1027–1032. https://doi.org/10.1016/0043-1354(88)90150-9. (PMID: 10.1016/0043-1354(88)90150-9)
Campos CBG, Figueiredo J, Perina F et al (2022) Occurrence, effects and environmental risk of antifouling biocides (EU PT21): are marine ecosystems threatened? Crit Rev Environ Sci Technol 52:3179–3210. https://doi.org/10.1080/10643389.2021.1910003. (PMID: 10.1080/10643389.2021.1910003)
Castro ÍB, Costa PG, Primel EG, Fillmann G (2015) Environmental matrices effect in butyltin determinations by GC/MS. Ecotoxicol Environ Contam 10:47–53. https://doi.org/10.5132/eec.2015.01.08. (PMID: 10.5132/eec.2015.01.08)
Castro ÍB, Iannacone J, Santos S, Fillmann G (2018) TBT is still a matter of concern in Peru. Chemosphere 205:253–259. https://doi.org/10.1016/j.chemosphere.2018.04.097. (PMID: 10.1016/j.chemosphere.2018.04.097)
Chen C, Chen L, Li F et al (2019a) Urgent caution to trace organometal pollution: occurrence, distribution and sources of methyltins, butyltins and phenyltins in sediments from South Hangzhou Bay, China. Environ Pollut 246:571–577. https://doi.org/10.1016/j.envpol.2018.12.037. (PMID: 10.1016/j.envpol.2018.12.037)
Chen C, Chen L, Xue R et al (2019b) Spatiotemporal variation and source apportionment of organotin compounds in sediments in the Yangtze Estuary. Environ Sci Eur 31:1–9. https://doi.org/10.1186/s12302-019-0207-z. (PMID: 10.1186/s12302-019-0207-z)
Commendatore MG, Franco MA, Gomes Costa P et al (2015) Butyltins, polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in sediments and bivalve mollusks in a mid-latitude environment from the Patagonian coastal zone. Environ Toxicol Chem 34:2750–2763. https://doi.org/10.1002/etc.3134. (PMID: 10.1002/etc.3134)
Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465. https://doi.org/10.1016/j.marpolbul.2011.01.012. (PMID: 10.1016/j.marpolbul.2011.01.012)
Davidson B, Valkirs A, Seligman P (1986) Acute and chronic effects of tributyltin of the mysid acanthomysis sculpta (Crustacea, Mysidacea). OCEANS ’86, Washington, DC, pp 1219–1228. https://doi.org/10.1109/OCEANS.1986.1160365. (PMID: 10.1109/OCEANS.1986.1160365)
Dean WE (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393. (PMID: 10.1023/A:1008066118210)
Del Brio F, Commendatore M, Castro IB et al (2016) Distribution and bioaccumulation of butyltins in the edible gastropod Odontocymbiola magellanica. Mar Biol Res 12:608–620. https://doi.org/10.1080/17451000.2016.1169296. (PMID: 10.1080/17451000.2016.1169296)
DeWitt TH, Swartz RC, Lamberson JO (1992) Measuring the acute toxicity of estuarine sediments. Environ Toxicol Chem 8:1035–1048. https://doi.org/10.1002/etc.5620081109. (PMID: 10.1002/etc.5620081109)
Diniz LGR, Jesus MS, Dominguez LAE et al (2014) First appraisal of water contamination by antifouling booster biocide of 3rd generation at Itaqui Harbor (São Luiz - Maranhão - Brazil). J Braz Chem Soc 25:380–388. https://doi.org/10.5935/0103-5053.20130289. (PMID: 10.5935/0103-5053.20130289)
EC [European Commission] (2016) Commission Implementing Decision (EU) 2016/107 of 27 January 2016 not approving cybutryne as an existing active substance for use in biocidal products for product-type 21. Official Journal of the European Union, p 81–82. Available at: https://eur-lex.europa.eu/eli/dec&#95;impl/2016/107/oj . Accessed 06 Aug 2021.
EC [European Commission] (2003) Technical guidance document on risk assessment. TGD Part II. Joint Research Centre, Institute for Health and Consumer protection, European Chemical Bureau, p 328. Available at: https://echa.europa.eu/documents/10162/987906/tgdpart2&#95;2ed&#95;en.pdf . Accessed 15 May 2021.
Eklund B, Watermann B (2018) Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea. Environ Sci Pollut Res 25:14595–14605. https://doi.org/10.1007/s11356-018-1614-1. (PMID: 10.1007/s11356-018-1614-1)
El Hadj Z, Boutiba Z, Meghabar R (2016) Trace analysis of butyltin compounds in seawater of some west Algerian harbors by gas chromatography-mass spectrometry. Environ Forensics 17:183–189. https://doi.org/10.1080/15275922.2016.1163624. (PMID: 10.1080/15275922.2016.1163624)
Environment Canada (2007) Guidance document on statistical methods for environmental toxicity tests. EPS 1/RM/46. Method Development and Applications Section, Environmental Technology Centre. Ottawa, ON, Canada, p 280. Available at: https://publications.gc.ca/site/eng/9.559583/publication.html . Accessed 13 Jul 2021.
Fang L, Xu C, Li J et al (2017) The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins: a review. Environ Sci Pollut Res 24:9159–9173. https://doi.org/10.1007/s11356-017-8449-z. (PMID: 10.1007/s11356-017-8449-z)
Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312. https://doi.org/10.1016/S0003-2670(02)00037-5. (PMID: 10.1016/S0003-2670(02)00037-5)
Fernandez-Parez M, Gonzalez-Pradas E, Villafranca-Sanchez M et al (2000) Bentonite and humic acid as modifying agents in controlled release formulations of Diuron and Atrazine. J Environ Qual 29:304–310. https://doi.org/10.2134/jeq2000.00472425002900010038x. (PMID: 10.2134/jeq2000.00472425002900010038x)
Figueiredo J, Loureiro S, Martins R (2020) Hazard of novel anti-fouling nanomaterials and biocides DCOIT and silver to marine organisms. Environ Sci Nano 7:1670–1680. https://doi.org/10.1039/d0en00023j. (PMID: 10.1039/d0en00023j)
Filipkowska A, Kowalewska G (2019) Butyltins in sediments from the Southern Baltic coastal zone: is it still a matter of concern, 10 years after implementation of the total ban? Mar Pollut Bull 146:343–348. https://doi.org/10.1016/j.marpolbul.2019.06.050. (PMID: 10.1016/j.marpolbul.2019.06.050)
Formalewicz MM, Rampazzo F, Noventa S et al (2019) Organotin compounds in touristic marinas of the northern Adriatic Sea: occurrence, speciation and potential recycling at the sediment-water interface. Environ Sci Pollut Res 26:31142–31157. https://doi.org/10.1007/s11356-019-06269-6. (PMID: 10.1007/s11356-019-06269-6)
Furdek M, Mikac N, Bueno M et al (2016) Organotin persistence in contaminated marine sediments and porewaters: in situ degradation study using species-specific stable isotopic tracers. J Hazard Mater 307:263–273. https://doi.org/10.1016/j.jhazmat.2015.12.037. (PMID: 10.1016/j.jhazmat.2015.12.037)
Gallucci F, Castro IB, Perina FC et al (2015) Ecological effects of Irgarol 1051 and Diuron on a coastal meiobenthic community: a laboratory microcosm experiment. Ecol Indic 58:21–31. https://doi.org/10.1016/j.ecolind.2015.05.030. (PMID: 10.1016/j.ecolind.2015.05.030)
Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032. https://doi.org/10.1016/j.chemosphere.2004.04.061. (PMID: 10.1016/j.chemosphere.2004.04.061)
Gomes DM, Galante-Oliveira S, Almeida C et al (2021) Temporal evolution of imposex and butyltin contamination in Gemophos viverratus from São Vicente (Cabo Verde) - a countercurrent trend on the world scenario. Mar Pollut Bull 170:112633. https://doi.org/10.1016/j.marpolbul.2021.112633. (PMID: 10.1016/j.marpolbul.2021.112633)
Gomes DM, Galante-Oliveira S, Oliveira IB et al (2021) Long-term monitoring of Nucella lapillus imposex in Ria de Aveiro (Portugal): When will a full recovery happen? Mar Pollut Bull 168:112411. https://doi.org/10.1016/j.marpolbul.2021.112411. (PMID: 10.1016/j.marpolbul.2021.112411)
Goodman LR, Cripe GM, Moody PH, Halsell DG (1988) Acute toxicity of malathion, tetrabromobisphenol-A, and tributyltin chloride to mysids (Mysidopsisbahia) of three ages. Bull Environ Contam Toxicol 41:746–753. https://doi.org/10.1007/BF02021028. (PMID: 10.1007/BF02021028)
Gray JS, Elliott M (2009) Ecology of Marine Sediments - From Science to Management, 2nd edn. Oxford University Press Inc., New York, United States. (PMID: 10.1093/oso/9780198569015.001.0001)
Gredelj A, Barausse A, Grechi L, Palmeri L (2018) Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Environ Int 119:66–78. https://doi.org/10.1016/j.envint.2018.06.017. (PMID: 10.1016/j.envint.2018.06.017)
Gross MG (1971) Carbon Determination. In: Carver RE (ed) Procedures in Sedimentary Petrology. Wiley-Interscience, New York, pp 573–596.
Haaksi H, Gustafsson J (2016) What is discharged from a boat bottom? Investigation about advantages with a boat wash pad. (Mitä pohjastasi irtoaa - veneiden pohjapesupaikan ympäristöhyötyjen selvitys). Report from Keep the Arcipelago Tidy (KAT), Finland. Available at: https://www.pidasaaristosiistina.fi/viestinta/julkaisut/raportit . Accessed 14 Jul 2021.
Hall LW, Bushong SJ, Hall WS, Johnson WE (1988) Acute and chronic effects of tributyltin on a chesapeake bay copepod. Environ Toxicol Chem 7:41–46. https://doi.org/10.1002/etc.5620070107. (PMID: 10.1002/etc.5620070107)
Hall LW, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367–437.
Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719. https://doi.org/10.1021/es60130a004. (PMID: 10.1021/es60130a004)
Harino H, Arai T, Ohji M, Miyazaki N (2009) Organotin contamination in deep sea environments. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo - Japan, pp 95–108. (PMID: 10.1007/978-4-431-85709-9_6)
Harino H, Yamato S (2021) Distribution of antifouling biocides in a coastal area of Tanabe Bay, Japan. J Mar Biol Assoc United Kingdom 101:49–59. https://doi.org/10.1017/S0025315420001381. (PMID: 10.1017/S0025315420001381)
Hassan AT, Qurban M, Manikandan K et al (2019) Assessment of the organotin pollution in the coastal sediments of the Western Arabian Gulf, Saudi Arabia. Mar Pollut Bull 139:174–180. https://doi.org/10.1016/j.marpolbul.2018.12.041. (PMID: 10.1016/j.marpolbul.2018.12.041)
Hoch M, Schwesig D (2004) Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Appl Geochemistry 19:323–334. https://doi.org/10.1016/S0883-2927(03)00131-8. (PMID: 10.1016/S0883-2927(03)00131-8)
IMO [International Maritime Organization] (2021) Status of IMO treaties - Comprehensive information on the status of multilateral Conventions and instruments in respect of which the International Maritime Organization or its Secretary - General performs depositary or other functions. London, UK. Available at: https://www.imo.org/en/About/Conventions/Pages/StatusOfConventions.aspx . Accessed 18 Sep 2021.
ISO [International Organization for Standardization] (1999) Water quality - Determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). ISO 14669, p 16.
Jokšas K, Stakėnienė R, Raudonytė-Svirbutavičienė E (2019) On the effectiveness of tributyltin ban: distribution and changes in butyltin concentrations over a 9-year period in Klaipėda Port. Lithuania. Ecotoxicol Environ Saf 183:109515. https://doi.org/10.1016/j.ecoenv.2019.109515. (PMID: 10.1016/j.ecoenv.2019.109515)
Karlsson J, Breitholtz M, Eklund B (2006) A practical ranking system to compare toxicity of anti-fouling paints. Mar Pollut Bull 52:1661–1667. https://doi.org/10.1016/j.marpolbul.2006.06.007. (PMID: 10.1016/j.marpolbul.2006.06.007)
Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. https://doi.org/10.1016/S0160-4120(03)00176-4. (PMID: 10.1016/S0160-4120(03)00176-4)
Kusk KO, Petersen S (1997) Acute and chronic toxicity of tributyltin and linear alkylbenzene sulfonate to the marine copepod Acartia tonsa. Environ Toxicol Chem 16:1629–1633. https://doi.org/10.1002/etc.5620160810. (PMID: 10.1002/etc.5620160810)
Kwok KWH, Leung KMY (2005) Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar Pollut Bull 51:830–837. https://doi.org/10.1016/j.marpolbul.2005.02.036. (PMID: 10.1016/j.marpolbul.2005.02.036)
Lam NH, Jeong Hh, Kang SD et al (2017) Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: contamination profiles and risk assessment. Mar Pollut Bull 121:302–312. https://doi.org/10.1016/j.marpolbul.2017.06.026. (PMID: 10.1016/j.marpolbul.2017.06.026)
Langston WJ, Harino H, Pope ND (2009) Behaviour of Organotins in the Coastal Environment. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer, pp 75–94. (PMID: 10.1007/978-4-431-85709-9_5)
Langston WJ, Pope ND (1995) Determinants of TBT adsorption and desorption in estuarine sediments. Mar Pollut Bull 31:32–43. https://doi.org/10.1016/0025-326X(95)91269-M. (PMID: 10.1016/0025-326X(95)91269-M)
Laranjeiro F, Beiras R, Barroso C (2018) The use of the biomarker imposex to assess the environmental status of aquatic ecosystems regarding tributyltin pollution. Ecol Indic 95:1068–1076. https://doi.org/10.1016/j.ecolind.2017.12.004. (PMID: 10.1016/j.ecolind.2017.12.004)
Lee K-W, Raisuddin S, Hwang D-S et al (2007) Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions. Environ Toxicol 22:532–538. https://doi.org/10.1002/tox.20289. (PMID: 10.1002/tox.20289)
Lee S, Lee YW (2017) Determination of five alternative antifouling agents in Korean marine sediments. Environ Earth Sci 76:1–9. https://doi.org/10.1007/s12665-017-6954-5. (PMID: 10.1007/s12665-017-6954-5)
Lofrano G, Libralato G, Alfieri A, Carotenuto M (2016) Metals and tributyltin sediment contamination along the Southeastern Tyrrhenian Sea coast. Chemosphere 144:399–407. https://doi.org/10.1016/j.chemosphere.2015.09.002. (PMID: 10.1016/j.chemosphere.2015.09.002)
Luczak C, Janquin MA, Kupka A (1997) Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 345:87–94. https://doi.org/10.1023/A:1002902626798. (PMID: 10.1023/A:1002902626798)
Maciel DC, Castro ÍB, Souza JRB et al (2018) Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast. Mar Pollut Bull 126:473–478. https://doi.org/10.1016/j.marpolbul.2017.11.061. (PMID: 10.1016/j.marpolbul.2017.11.061)
Marcic C, Le Hecho I, Denaix L, Lespes G (2006) TBT and TPhT persistence in a sludged soil. Chemosphere 65:2322–2332. https://doi.org/10.1016/j.chemosphere.2006.05.007. (PMID: 10.1016/j.chemosphere.2006.05.007)
Martins SE, Fillmann G, Lillicrap A, Thomas KV (2018) Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 34:34–52. https://doi.org/10.1080/08927014.2017.1404036. (PMID: 10.1080/08927014.2017.1404036)
Mattos Y, Stotz WB, Romero MS et al (2017) Butyltin contamination in Northern Chilean coast: is there a potential risk for consumers? Sci Total Environ 595:209–217. https://doi.org/10.1016/j.scitotenv.2017.03.264. (PMID: 10.1016/j.scitotenv.2017.03.264)
Meador JP, Sommers FC, Cooper KA, Yanagida G (2011) Tributyltin and the obesogen metabolic syndrome in a salmonid. Environ Res 111:50–56. https://doi.org/10.1016/j.envres.2010.11.012. (PMID: 10.1016/j.envres.2010.11.012)
Mukhtar A, Mohamat-Yusuff F, Zulkifli S et al (2019) Concentration of organotin and booster biocides in sediments of seagrass area from Sungai Pulai Estuary, South of Johor, Malaysia. Environments 6:26. https://doi.org/10.3390/environments6020026. (PMID: 10.3390/environments6020026)
Mukhtar A, Zulkifli SZ, Mohamat-Yusuff F et al (2020) Distribution of biocides in selected marine organisms from South of Johor, Malaysia. Reg Stud Mar Sci 38:101384. https://doi.org/10.1016/j.rsma.2020.101384. (PMID: 10.1016/j.rsma.2020.101384)
Okamura H, Aoyama I, Ono Y, Nishida T (2003) Antifouling herbicides in the coastal waters of western Japan. Mar Pollut Bull 47:59–67. https://doi.org/10.1016/S0025-326X(02)00418-6. (PMID: 10.1016/S0025-326X(02)00418-6)
de Oliveira DD, Rojas EG, dos Fernandez MA, S, (2020) Should TBT continue to be considered an issue in dredging port areas? A brief review of the global evidence. Ocean Coast Manag 197:105303. https://doi.org/10.1016/j.ocecoaman.2020.105303. (PMID: 10.1016/j.ocecoaman.2020.105303)
Paz-Villarraga CA, Castro IB, Miloslavich P, Fillmann G (2015) Venezuelan Caribbean Sea under the threat of TBT. Chemosphere 119:704–710. https://doi.org/10.1016/j.chemosphere.2014.07.068. (PMID: 10.1016/j.chemosphere.2014.07.068)
Paz-Villarraga CA, Castro IB, Fillmann G. (2021) Biocides in antifouling paint formulations currently registered for use. Environ Sci Pollut Res (ESPR-D-21–09468). Pre-print available at https://doi.org/10.21203/rs.3.rs-704342/v1.
Perina FC, Abessa DMS, Pinho GLL, Fillmann G (2011) Comparative toxicity of antifouling compounds on the development of sea urchin. Ecotoxicology 20:1870–1880. https://doi.org/10.1007/s10646-011-0725-y. (PMID: 10.1007/s10646-011-0725-y)
Price ARG, Readman JW (2013) Booster biocide antifoulants: is history repeating itself? Publications Office of the European Union, Copenhagen, Denmark, European Environment Agency.
Quintas PY, Alvarez MB, Arias AH et al (2019) Spatiotemporal distribution of organotin compounds in the coastal water of the Bahía Blanca estuary (Argentina). Environ Sci Pollut Res 26:7601–7613. https://doi.org/10.1007/s11356-019-04181-7. (PMID: 10.1007/s11356-019-04181-7)
Rand GM, Wells PG, McCarty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, 2nd edn. Taylor & Francis, Washington, DC, pp 3–67.
Ranke J, Jastorff B (2000) Multidimensional risk analysis of antifouling biocides. Environ Sci Pollut Res 7:105–114. https://doi.org/10.1065/espr199910.003. (PMID: 10.1065/espr199910.003)
Rodríguez-Grimon R, Campos NH, Castro ÍB (2020) Imposex incidence in gastropod species from Santa Marta Coastal Zone, Colombian Caribbean Sea. Bull Environ Contam Toxicol 105:728–735. https://doi.org/10.1007/s00128-020-03020-7. (PMID: 10.1007/s00128-020-03020-7)
Rogers HR, Watts CD, Johnson I (1996) Comparative predictions of irgarol 1051 and atrazine fate and toxicity. Environ Technol (united Kingdom) 17:553–556. https://doi.org/10.1080/09593331708616418. (PMID: 10.1080/09593331708616418)
Romeo T, D’Alessandro M, Esposito V, et al (2015) Environmental quality assessment of Grand Harbour (Valletta, Maltese Islands): a case study of a busy harbour in the Central Mediterranean Sea. Environ Monit Assess 187. https://doi.org/10.1007/s10661-015-4950-3.
Salazar MH, Salazar SM (1989) Acute effects of (Bis) tributyltin oxide on marine organisms. Summary of Work Performed 1981 to 1983. Technical Report 1299. Naval Ocean Systems Center, San Diego, CA, USA, p 86. Available at: https://apps.dtic.mil/sti/pdfs/ADA214005.pdf . Accessed 15 Feb 2021.
Sapozhnikova Y, Wirth E, Schiff K, Fulton M (2013) Antifouling biocides in water and sediments from California marinas. Mar Pollut Bull 69:189–194. https://doi.org/10.1016/j.marpolbul.2013.01.039. (PMID: 10.1016/j.marpolbul.2013.01.039)
Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. EPA/600/R 02/069. Ecological Risk Assessment Support Center (ERASC). U.S. Environmental Protection Agency. Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100S8MB.PDF?Dockey=P100S8MB.PDF . Accessed 15 Mar 2021.
Sheikh MA, Fasih MM, Strand J et al (2020) Potential of silicone passive sampler for Tributyltin (TBT) detection in tropical aquatic systems. Reg Stud Mar Sci 35:101171. https://doi.org/10.1016/j.rsma.2020.101171. (PMID: 10.1016/j.rsma.2020.101171)
Sorgog K, Kamo M (2019) Quantifying the precision of ecological risk: conventional assessment factor method vs. species sensitivity distribution method. Ecotoxicol Environ Saf 183:109494. https://doi.org/10.1016/j.ecoenv.2019.109494. (PMID: 10.1016/j.ecoenv.2019.109494)
Soroldoni S, Castro ÍB, Abreu F et al (2018) Antifouling paint particles: sources, occurrence, composition and dynamics. Water Res 137:47–56. https://doi.org/10.1016/j.watres.2018.02.064. (PMID: 10.1016/j.watres.2018.02.064)
Tanabe S (1999) Butyltin contamination in marine mammals – a review. Mar Pollut Bull 39:62–72. https://doi.org/10.1016/S0025-326X(99)00064-8. (PMID: 10.1016/S0025-326X(99)00064-8)
Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88. https://doi.org/10.1080/08927010903216564. (PMID: 10.1080/08927010903216564)
Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127. https://doi.org/10.1016/S0048-9697(01)01153-6. (PMID: 10.1016/S0048-9697(01)01153-6)
Titley-O’Neal CP, Munkittrick KR, MacDonald BA (2011) The effects of organotin on female gastropods. J Environ Monit 13:2360–2388. https://doi.org/10.1039/c1em10011d. (PMID: 10.1039/c1em10011d)
Turner A, Glegg G (2014) TBT-based antifouling paints remain on sale. Mar Pollut Bull 88:398–400. https://doi.org/10.1016/j.marpolbul.2014.08.041. (PMID: 10.1016/j.marpolbul.2014.08.041)
Uc-Peraza RG, Castro IB, Fillmann G. (2022a). An absurd scenario at 2021: banned TBT-based antifouling products still available on the market. Sci Total Environ, 805, 20 January 2022a, 150377 https://doi.org/10.1016/j.scitotenv.2021.150377.
Uc-Peraza RG, Delgado-Blas VH, Rendón-von Osten J, et al (2022b) Mexican paradise under threat: the impact of antifouling biocides along the Yucatán Peninsula. J Hazard Mater 427. https://doi.org/10.1016/j.jhazmat.2021.128162.
U’Ren SC (1983) Acute toxicity of bis(tributyltin) oxide to a marine copepod. Mar Pollut Bull 14:303–306. https://doi.org/10.1016/0025-326X(83)90540-4. (PMID: 10.1016/0025-326X(83)90540-4)
USEPA [United States Environmental Protection Agency] (2000) Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database - EEDB). Environmental Fate and Effects Division, Washington, D.C.; ECOREF #344: U.S. Environmental Protection Agency. In: EPA Ecotox Database. https://cfpub.epa.gov/ecotox/search.cfm . Accessed 11 Aug 2020.
van Gessellen N, Bouwman H, Averbuj A (2018) Imposex assessment and tributyltin levels in sediments along the Atlantic coast of South Africa. Mar Environ Res 142:32–39. https://doi.org/10.1016/j.marenvres.2018.09.016. (PMID: 10.1016/j.marenvres.2018.09.016)
Voulvoulis N, Scrimshaw MD, Lester JN (2002) Partitioning of selected antifouling biocides in the aquatic environment. Mar Environ Res 53:1–16. https://doi.org/10.1016/S0141-1136(01)00102-7. (PMID: 10.1016/S0141-1136(01)00102-7)
Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–390. (PMID: 10.1086/622910)
Zamboni AJ, Costa JB (2002) Testes de toxicidade com sedimentos marinhos utilizando tanaidáceos (Toxicity tests with marine sediments using tanaid). In: Nascimento IA, Sousa ECPM, Nipper M (eds) Métodos em Ecotoxicologia Marinha: Aplicações no Brasil (Methods in Marine Ecotoxicology: Applications in Brazil), 1st edn. Comp & Art, Salvador, BA, Brazil, pp 179–188 (in portuguese).
معلومات مُعتمدة: 134170/2007-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Grant No. 456372/2013-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; PQ No 312341/2013-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 314202/2018-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico; PQ No 311609/2014-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 308533/2018-6 Conselho Nacional de Desenvolvimento Científico e Tecnológico; PQ No 304495/2019-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Pq No 302713/2018-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 88887.124100/2016-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 1111/13 - 01.14.0141.00 Financiadora de Estudos e Projetos; UIDP/50017/2020+UIDB/50017/2020+ LA/P/0094/2020 Fundação para Ciência e Tecnologia / Ministério da Ciência, Tecnologia e Ensino Superior
فهرسة مساهمة: Keywords: Aquatic contaminants; Booster biocides; Ecotoxicology; Environmental hazard; Marine toxicity test; Organotin; PNEC
المشرفين على المادة: 9I3SDS92WY (Diuron)
0 (Disinfectants)
0 (Water Pollutants, Chemical)
0 (Triazines)
تواريخ الأحداث: Date Created: 20230319 Date Completed: 20230510 Latest Revision: 20230510
رمز التحديث: 20230512
DOI: 10.1007/s11356-023-26368-9
PMID: 36934191
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-26368-9