دورية أكاديمية

Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids.

التفاصيل البيبلوغرافية
العنوان: Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids.
المؤلفون: Kapil K; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States., Jazani AM; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States., Szczepaniak G; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States., Murata H; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States., Olszewski M; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States., Matyjaszewski K; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
المصدر: Macromolecules [Macromolecules] 2023 Feb 20; Vol. 56 (5), pp. 2017-2026. Date of Electronic Publication: 2023 Feb 20 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 0365316 Publication Model: eCollection Cited Medium: Print ISSN: 0024-9297 (Print) Linking ISSN: 00249297 NLM ISO Abbreviation: Macromolecules Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, American Chemical Society.
مستخلص: Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH 2 ) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using Cu II /Me 6 TREN (Me 6 TREN = tris[2-(dimethylamino)ethyl]amine) and EYH 2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA 480 ) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Competing Interests: The authors declare no competing financial interest.
(© 2023 The Authors. Published by American Chemical Society.)
References: Chem Soc Rev. 2018 Jun 18;47(12):4357-4387. (PMID: 29718038)
Macromol Rapid Commun. 2022 Dec 5;:e2200855. (PMID: 36471106)
ACS Macro Lett. 2019 Dec 17;8(12):1546-1551. (PMID: 35619380)
Front Chem. 2021 Aug 13;9:734076. (PMID: 34476232)
Nat Chem. 2017 Jun;9(6):537-545. (PMID: 28537595)
Chem Rev. 2016 Sep 14;116(17):10212-75. (PMID: 26745441)
Adv Mater. 2018 Jun;30(23):e1706441. (PMID: 29582478)
Angew Chem Int Ed Engl. 2018 Jul 16;57(29):8998-9002. (PMID: 29757482)
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202208180. (PMID: 35882626)
J Am Chem Soc. 2022 Aug 31;144(34):15413-15430. (PMID: 35882005)
Chem Sci. 2020 Aug 6;11(33):8809-8816. (PMID: 34123134)
Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3209-3217. (PMID: 31773858)
ACS Macro Lett. 2018 Aug 21;7(8):1016-1021. (PMID: 31827976)
ACS Macro Lett. 2018 Mar 20;7(3):275-280. (PMID: 35632917)
J Am Chem Soc. 2014 Nov 12;136(45):16096-101. (PMID: 25360628)
Adv Mater. 2022 Apr;34(14):e2108446. (PMID: 35032043)
Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2740-2743. (PMID: 28164438)
Acc Chem Res. 2021 Apr 6;54(7):1779-1790. (PMID: 33751886)
Chem Rev. 2022 Mar 23;122(6):5476-5518. (PMID: 34982536)
Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13621-13625. (PMID: 33751767)
Chem Soc Rev. 2018 Dec 21;47(24):8998-9014. (PMID: 30443654)
Angew Chem Int Ed Engl. 2018 Dec 3;57(49):16157-16161. (PMID: 30329207)
Biomacromolecules. 2022 Oct 10;23(10):4241-4253. (PMID: 36067415)
ACS Macro Lett. 2022 Apr 19;11(4):415-421. (PMID: 35575317)
Chem Rev. 2022 Jan 26;122(2):1830-1874. (PMID: 34842426)
ACS Macro Lett. 2022 Sep 20;11(9):1091-1096. (PMID: 35998359)
Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7898-7902. (PMID: 29637671)
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):12974-12978. (PMID: 31339205)
Nat Commun. 2020 Mar 20;11(1):1486. (PMID: 32198365)
J Polym Sci A Polym Chem. 2019 Feb 1;57(3):268-273. (PMID: 31011240)
Chem Rev. 2009 Nov;109(11):5402-36. (PMID: 19764725)
Angew Chem Int Ed Engl. 2023 Mar 1;62(10):e202217658. (PMID: 36645871)
Angew Chem Int Ed Engl. 2018 Aug 13;57(33):10468-10482. (PMID: 29603854)
Nat Rev Drug Discov. 2008 Jan;7(1):21-39. (PMID: 18097458)
ACS Macro Lett. 2012 Jan 17;1(1):141-145. (PMID: 35578469)
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202117377. (PMID: 35128771)
J Am Chem Soc. 2016 Feb 24;138(7):2411-25. (PMID: 26820243)
Nat Chem. 2010 Oct;2(10):811-20. (PMID: 20861895)
J Am Chem Soc. 2020 Feb 12;142(6):3158-3164. (PMID: 31967475)
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15309-14. (PMID: 17032773)
J Am Chem Soc. 2019 May 8;141(18):7486-7497. (PMID: 30977644)
J Am Chem Soc. 2008 Sep 24;130(38):12762-74. (PMID: 18761460)
Biomacromolecules. 2022 Sep 12;23(9):3831-3846. (PMID: 35984406)
Chem Rev. 2016 Sep 14;116(17):10167-211. (PMID: 26978484)
Adv Mater. 2022 Jul;34(30):e2201809. (PMID: 35593444)
Biomacromolecules. 2013 Jun 10;14(6):1919-26. (PMID: 23600667)
ACS Macro Lett. 2012 Jan 17;1(1):6-10. (PMID: 35578470)
Biomacromolecules. 2019 Jan 14;20(1):212-221. (PMID: 30407801)
Acc Chem Res. 2016 Oct 18;49(10):2316-2327. (PMID: 27669097)
Chem Sci. 2020 May 5;11(20):5257-5266. (PMID: 34122982)
Angew Chem Int Ed Engl. 2018 Jan 22;57(4):933-936. (PMID: 29240973)
ACS Macro Lett. 2012 Oct 16;1(10):1219-1223. (PMID: 35607200)
Nat Chem. 2020 Jul;12(7):638-646. (PMID: 32424254)
J Am Chem Soc. 2014 Sep 24;136(38):13303-12. (PMID: 25178119)
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14910-14920. (PMID: 32416006)
J Biomol Screen. 2007 Apr;12(3):418-28. (PMID: 17438070)
Science. 2003 Aug 29;301(5637):1196-202. (PMID: 12947189)
Clin Ther. 2002 Nov;24(11):1720-40; discussion 1719. (PMID: 12501870)
Macromol Rapid Commun. 2019 Jan;40(1):e1800616. (PMID: 30375120)
ACS Macro Lett. 2019 May 21;8(5):603-609. (PMID: 35619358)
Science. 2016 May 27;352(6289):1082-6. (PMID: 27033549)
ACS Macro Lett. 2022 Mar 15;11(3):376-381. (PMID: 35575360)
ACS Macro Lett. 2018;7(10):1248-1253. (PMID: 31819831)
J Am Chem Soc. 2016 Jun 15;138(23):7346-52. (PMID: 27184213)
Chem Sci. 2020 May 6;11(20):5142-5156. (PMID: 34122971)
Science. 2011 Apr 1;332(6025):81-4. (PMID: 21454784)
Adv Intell Syst. 2020 Feb;2(2):. (PMID: 35586369)
Nat Rev Drug Discov. 2003 Mar;2(3):214-21. (PMID: 12612647)
Chem Soc Rev. 2018 Jul 17;47(14):5457-5490. (PMID: 29868657)
Biomacromolecules. 2017 Feb 13;18(2):576-586. (PMID: 28081602)
Langmuir. 2007 Apr 10;23(8):4528-31. (PMID: 17371060)
J Am Chem Soc. 2021 Jun 30;143(25):9630-9638. (PMID: 34152140)
Biomacromolecules. 2019 Dec 9;20(12):4272-4298. (PMID: 31738532)
Prog Polym Sci. 2020 Jan;100:. (PMID: 32863465)
Sci Rep. 2017 Aug 31;7(1):10176. (PMID: 28860621)
ACS Macro Lett. 2016 Feb 16;5(2):258-262. (PMID: 35614689)
J Am Chem Soc. 2014 May 7;136(18):6513-33. (PMID: 24758377)
Chem Sci. 2022 Sep 20;13(39):11540-11550. (PMID: 36320395)
Langmuir. 2019 Jun 18;35(24):7744-7750. (PMID: 31117731)
تواريخ الأحداث: Date Created: 20230320 Latest Revision: 20230321
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10019465
DOI: 10.1021/acs.macromol.2c02537
PMID: 36938511
قاعدة البيانات: MEDLINE
الوصف
تدمد:0024-9297
DOI:10.1021/acs.macromol.2c02537