دورية أكاديمية

Astrocyte structural heterogeneity in the mouse hippocampus.

التفاصيل البيبلوغرافية
العنوان: Astrocyte structural heterogeneity in the mouse hippocampus.
المؤلفون: Viana JF; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Machado JL; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Abreu DS; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Veiga A; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Barsanti S; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Tavares G; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Martins M; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Sardinha VM; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Guerra-Gomes S; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal., Domingos C; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany., Pauletti A; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany., Wahis J; Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium., Liu C; Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium., Calì C; Department of Neuroscience, University of Torino, Torino, Italy.; NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Henneberger C; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany., Holt MG; Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.; Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135, Porto, Portugal., Oliveira JF; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.; IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal.
المصدر: Glia [Glia] 2023 Jul; Vol. 71 (7), pp. 1667-1682. Date of Electronic Publication: 2023 Mar 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8806785 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-1136 (Electronic) Linking ISSN: 08941491 NLM ISO Abbreviation: Glia Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, Inc., c1988-
مواضيع طبية MeSH: Astrocytes*/physiology , Hippocampus*, Animals ; Mice ; CA1 Region, Hippocampal ; Neuroglia ; Synaptic Transmission
مستخلص: Astrocytes are integral components of brain circuits, where they sense, process, and respond to surrounding activity, maintaining homeostasis and regulating synaptic transmission, the sum of which results in behavior modulation. These interactions are possible due to their complex morphology, composed of a tree-like structure of processes to cover defined territories ramifying in a mesh-like system of fine leaflets unresolved by conventional optic microscopy. While recent reports devoted more attention to leaflets and their dynamic interactions with synapses, our knowledge about the tree-like "backbone" structure in physiological conditions is incomplete. Recent transcriptomic studies described astrocyte molecular diversity, suggesting structural heterogeneity in regions such as the hippocampus, which is crucial for cognitive and emotional behaviors. In this study, we carried out the structural analysis of astrocytes across the hippocampal subfields of Cornu Ammonis area 1 (CA1) and dentate gyrus in the dorsoventral axis. We found that astrocytes display heterogeneity across the hippocampal subfields, which is conserved along the dorsoventral axis. We further found that astrocytes appear to contribute in an exocytosis-dependent manner to a signaling loop that maintains the backbone structure. These findings reveal astrocyte heterogeneity in the hippocampus, which appears to follow layer-specific cues and depend on the neuro-glial environment.
(© 2023 The Authors. GLIA published by Wiley Periodicals LLC.)
References: Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., Refaeli, R., Horn, H., Regev, L., Groysman, M., London, M., & Goshen, I. (2018). Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 174(1), 59-71.e14. https://doi.org/10.1016/j.cell.2018.05.002.
Anders, S., Minge, D., Griemsmann, S., Herde, M. K., Steinhäuser, C., & Henneberger, C. (2014). Spatial properties of astrocyte gap junction coupling in the rat hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1654), 20130600. https://doi.org/10.1098/rstb.2013.0600.
Andersen, P., Morris, R., Amaral, D., O'Keefe, J., & Bliss, T. (2007). The hippocampus book. Oxford University Press.
Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H. R., Robitaille, R., & Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron, 81(4), 728-739. https://doi.org/10.1016/j.neuron.2014.02.007.
Arizono, M., Inavalli, V. V. G. K., Bancelin, S., Fernández-Monreal, M., & Nägerl, U. V. (2021). Super-resolution shadow imaging reveals local remodeling of astrocytic microstructures and brain extracellular space after osmotic challenge. Glia, 69(6), 1605-1613. https://doi.org/10.1002/glia.23995.
Arizono, M., & Nägerl, U. V. (2022). Deciphering the functional nano-anatomy of the tripartite synapse using stimulated emission depletion microscopy. Glia, 70(4), 607-618. https://doi.org/10.1002/glia.24103.
Aten, S., Kiyoshi, C. M., Arzola, E. P., Patterson, J. A., Taylor, A. T., Du, Y., Guiher, A. M., Philip, M., Camacho, E. G., Mediratta, D., Collins, K., Boni, K., Garcia, S. A., Kumar, R., Drake, A. N., Hegazi, A., Trank, L., Benson, E., Kidd, G., … Zhou, M. (2022). Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Progress in Neurobiology, 213, 102264. https://doi.org/10.1016/j.pneurobio.2022.102264.
Bail, M. L., Martineau, M., Sacchi, S., Yatsenko, N., Radzishevsky, I., Conrod, S., Ouares, K. A., Wolosker, H., Pollegioni, L., Billard, J.-M., & Mothet, J.-P. (2015). Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 112(2), E204-E213. https://doi.org/10.1073/pnas.1416668112.
Batiuk, M. Y., Martirosyan, A., Wahis, J., de Vin, F., Marneffe, C., Kusserow, C., Koeppen, J., Viana, J. F., Oliveira, J. F., Voet, T., Ponting, C. P., Belgard, T. G., & Holt, M. G. (2020). Identification of region-specific astrocyte subtypes at single cell resolution. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-019-14198-8.
Bayraktar, O. A., Bartels, T., Holmqvist, S., Kleshchevnikov, V., Martirosyan, A., Polioudakis, D., Haim, L. B., Young, A. M. H., Batiuk, M. Y., Prakash, K., Brown, A., Roberts, K., Paredes, M. F., Kawaguchi, R., Stockley, J. H., Sabeur, K., Chang, S. M., Huang, E., Hutchinson, P., … Rowitch, D. H. (2020). Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience, 1-10, 500-509. https://doi.org/10.1038/s41593-020-0602-1.
Beletskiy, A., Positselskaya, E., Vinarskaya, A. K., Spivak, Y. S., Dobryakova, Y. V., Tyulenev, I., Markevich, V. A., & Bolshakov, A. P. (2022). Detailed analysis of dorsal-ventral gradients of gene expression in the hippocampus of adult rats. International Journal of Molecular Sciences, 23(17), Article 17. https://doi.org/10.3390/ijms23179948.
Bernardinelli, Y., Randall, J., Janett, E., Nikonenko, I., König, S., Jones, E. V., Flores, C. E., Murai, K. K., Bochet, C. G., Holtmaat, A., & Muller, D. (2014). Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Current Biology, 24(15), 1679-1688. https://doi.org/10.1016/j.cub.2014.06.025.
Bohmbach, K., Masala, N., Schönhense, E. M., Hill, K., Haubrich, A. N., Zimmer, A., Opitz, T., Beck, H., & Henneberger, C. (2022). An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-35620-8.
Bondi, H., Bortolotto, V., Canonico, P. L., & Grilli, M. (2021). Complex and regional-specific changes in the morphological complexity of GFAP+ astrocytes in middle-aged mice. Neurobiology of Aging, 100, 59-71. https://doi.org/10.1016/j.neurobiolaging.2020.12.018.
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22(1), 183-192.
Calì, C., Agus, M., Kare, K., Boges, D. J., Lehväslaiho, H., Hadwiger, M., & Magistretti, P. J. (2019). 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from serial block-face electron microscopy of juvenile rat. Progress in Neurobiology, 183, 101696. https://doi.org/10.1016/j.pneurobio.2019.101696.
Chai, H., Diaz-Castro, B., Shigetomi, E., Monte, E., Octeau, J. C., Yu, X., Cohn, W., Rajendran, P. S., Vondriska, T. M., Whitelegge, J. P., Coppola, G., & Khakh, B. S. (2017). Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron, 95(3), 531-549.e9. https://doi.org/10.1016/j.neuron.2017.06.029.
Chipman, P. H., Fung, C. C. A., Pazo Fernandez, A., Sawant, A., Tedoldi, A., Kawai, A., Ghimire Gautam, S., Kurosawa, M., Abe, M., Sakimura, K., Fukai, T., & Goda, Y. (2021). Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. eLife, 10, e70818. https://doi.org/10.7554/eLife.70818.
Clavreul, S., Abdeladim, L., Hernández-Garzón, E., Niculescu, D., Durand, J., Ieng, S.-H., Barry, R., Bonvento, G., Beaurepaire, E., Livet, J., & Loulier, K. (2019). Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nature Communications, 10(1), 1-14. https://doi.org/10.1038/s41467-019-12791-5.
de Oliveira Figueiredo, E. C., Calì, C., Petrelli, F., & Bezzi, P. (2022). Emerging evidence for astrocyte dysfunction in schizophrenia. Glia, 70(9), 1585-1604. https://doi.org/10.1002/glia.24221.
Eilam, R., Aharoni, R., Arnon, R., & Malach, R. (2016). Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from mice to human. eLife, 5, e15915. https://doi.org/10.7554/eLife.15915.
Emsley, J. G., & Macklis, J. D. (2006). Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biology, 2(3), 175-186. https://doi.org/10.1017/S1740925X06000202.
Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 378(6619), eadc9020. https://doi.org/10.1126/science.adc9020.
Fellin, T., Halassa, M. M., Terunuma, M., Succol, F., Takano, H., Frank, M., Moss, S. J., & Haydon, P. G. (2009). Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 15037-15042.
Fossat, P., Turpin, F. R., Sacchi, S., Dulong, J., Shi, T., Rivet, J.-M., Sweedler, J. V., Pollegioni, L., Millan, M. J., Oliet, S. H. R., & Mothet, J.-P. (2012). Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cerebral Cortex, 22(3), 595-606. https://doi.org/10.1093/cercor/bhr130.
Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E., & Knott, G. W. (2006). Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biology, 4(11), e343. https://doi.org/10.1371/journal.pbio.0040343.
Grosche, A., Grosche, J., Tackenberg, M., Scheller, D., Gerstner, G., Gumprecht, A., Pannicke, T., Hirrlinger, P. G., Wilhelmsson, U., Hüttmann, K., Härtig, W., Steinhäuser, C., Pekny, M., & Reichenbach, A. (2013). Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS One, 8(7), e69143. https://doi.org/10.1371/journal.pone.0069143.
Guercio, G. D., Bevictori, L., Vargas-Lopes, C., Madeira, C., Oliveira, A., Carvalho, V. F., d'Avila, J. C., & Panizzutti, R. (2014). D-serine prevents cognitive deficits induced by acute stress. Neuropharmacology, 86, 1-8. https://doi.org/10.1016/j.neuropharm.2014.06.021.
Halassa, M. M., Florian, C., Fellin, T., Munoz, J. R., Lee, S.-Y., Abel, T., Haydon, P. G., & Frank, M. G. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61(2), 213-219. https://doi.org/10.1016/j.neuron.2008.11.024.
Han, H., Peng, Y., & Dong, Z. (2015). D-serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate. Pharmacology Biochemistry and Behavior, 133, 51-56. https://doi.org/10.1016/j.pbb.2015.03.017.
Henneberger, C., Bard, L., Panatier, A., Reynolds, J. P., Kopach, O., Medvedev, N. I., Minge, D., Herde, M. K., Anders, S., Kraev, I., Heller, J. P., Rama, S., Zheng, K., Jensen, T. P., Sanchez-Romero, I., Jackson, C. J., Janovjak, H., Ottersen, O. P., Nagelhus, E. A., … Rusakov, D. A. (2020). LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron, 108(5), 919-936.e11. https://doi.org/10.1016/j.neuron.2020.08.030.
Henneberger, C., Papouin, T., Oliet, S. H. R., & Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463(7278), 232-236. https://doi.org/10.1038/nature08673.
Herde, M. K., Bohmbach, K., Domingos, C., Vana, N., Komorowska-Müller, J. A., Passlick, S., Schwarz, I., Jackson, C. J., Dietrich, D., Schwarz, M. K., & Henneberger, C. (2020). Local efficacy of glutamate uptake decreases with synapse size. Cell Reports, 32(12), 108182. https://doi.org/10.1016/j.celrep.2020.108182.
Hirrlinger, J., & Nimmerjahn, A. (2022). A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia, 70, 1554-1580. https://doi.org/10.1002/glia.24168.
Houades, V., Rouach, N., Ezan, P., Kirchhoff, F., Koulakoff, A., & Giaume, C. (2006). Shapes of astrocyte networks in the juvenile brain. Neuron Glia Biology, 2(1), 3-14. https://doi.org/10.1017/S1740925X06000081.
Jones, M. E., Paniccia, J. E., Lebonville, C. L., Reissner, K. J., & Lysle, D. T. (2018). Chemogenetic manipulation of dorsal hippocampal astrocytes protects against the development of stress-enhanced fear learning. Neuroscience, 388, 45-56. https://doi.org/10.1016/j.neuroscience.2018.07.015.
Karpf, J., Unichenko, P., Chalmers, N., Beyer, F., Wittmann, M.-T., Schneider, J., Fidan, E., Reis, A., Beckervordersandforth, J., Brandner, S., Liebner, S., Falk, S., Sagner, A., Henneberger, C., & Beckervordersandforth, R. (2022). Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features. Nature Neuroscience, 25(12), Article 12-Article 1638. https://doi.org/10.1038/s41593-022-01192-5.
Khakh, B. S., & Sofroniew, M. V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience, 18(7), 942-952. https://doi.org/10.1038/nn.4043.
King, A. C., Wood, T. E., Rodriguez, E., Parpura, V., & Gray, M. (2020). Differential effects of SNARE-dependent gliotransmission on behavioral phenotypes in a mouse model of Huntington's disease. Experimental Neurology, 330, 113358. https://doi.org/10.1016/j.expneurol.2020.113358.
Lanjakornsiripan, D., Pior, B.-J., Kawaguchi, D., Furutachi, S., Tahara, T., Katsuyama, Y., Suzuki, Y., Fukazawa, Y., & Gotoh, Y. (2018). Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-03940-3.
Lavialle, M., Aumann, G., Anlauf, E., Pröls, F., Arpin, M., & Derouiche, A. (2011). Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12915-12919. https://doi.org/10.1073/pnas.1100957108.
Lee, S. L. T., Lew, D., Wickenheisser, V., & Markus, E. J. (2019). Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain and Behavior, 9(10), e01410. https://doi.org/10.1002/brb3.1410.
Levone, B. R., Moloney, G. M., Cryan, J. F., & O'Leary, O. F. (2021). Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiology of Stress, 14, 100331. https://doi.org/10.1016/j.ynstr.2021.100331.
Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., & Lichtman, J. W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56-62. https://doi.org/10.1038/nature06293.
Lushnikova, I., Skibo, G., Muller, D., & Nikonenko, I. (2009). Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus, 19(8), 753-762. https://doi.org/10.1002/hipo.20551.
Machado-Santos, A. R., Loureiro-Campos, E., Patrício, P., Araújo, B., Alves, N. D., Mateus-Pinheiro, A., Correia, J. S., Morais, M., Bessa, J. M., Sousa, N., Rodrigues, A. J., Oliveira, J. F., & Pinto, L. (2022). Beyond new neurons in the adult hippocampus: Imipramine acts as a pro-astrogliogenic factor and rescues cognitive impairments induced by stress exposure. Cell, 11(3), Article 3. https://doi.org/10.3390/cells11030390.
Mateus-Pinheiro, A., Patrício, P., Alves, N. D., Martins-Macedo, J., Caetano, I., Silveira-Rosa, T., Araújo, B., Mateus-Pinheiro, M., Silva-Correia, J., Sardinha, V. M., Loureiro-Campos, E., Rodrigues, A. J., Oliveira, J. F., Bessa, J. M., Sousa, N., & Pinto, L. (2021). Hippocampal cytogenesis abrogation impairs inter-regional communication between the hippocampus and prefrontal cortex and promotes the time-dependent manifestation of emotional and cognitive deficits. Molecular Psychiatry, 1-13, 7154-7166. https://doi.org/10.1038/s41380-021-01287-8.
Minge, D., Domingos, C., Unichenko, P., Behringer, C., Pauletti, A., Anders, S., Herde, M. K., Delekate, A., Gulakova, P., Schoch, S., Petzold, G. C., & Henneberger, C. (2021). Heterogeneity and development of fine astrocyte morphology captured by diffraction-limited microscopy. Frontiers in Cellular Neuroscience, 15. https://doi.org/10.3389/fncel.2021.669280.
Morel, L., Higashimori, H., Tolman, M., & Yang, Y. (2014). VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. Journal of Neuroscience, 34(33), 10950-10962. https://doi.org/10.1523/JNEUROSCI.1167-14.2014.
Nagai, J., Yu, X., Papouin, T., Cheong, E., Freeman, M. R., Monk, K. R., Hastings, M. H., Haydon, P. G., Rowitch, D., Shaham, S., & Khakh, B. S. (2020). Behaviorally consequential astrocytic regulation of neural circuits. Neuron, 109(4), 576-596. https://doi.org/10.1016/j.neuron.2020.12.008.
Navarrete, M., Cuartero, M. I., Palenzuela, R., Draffin, J. E., Konomi, A., Serra, I., Colié, S., Castaño-Castaño, S., Hasan, M. T., Nebreda, Á. R., & Esteban, J. A. (2019). Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nature Communications, 10(1), 2968. https://doi.org/10.1038/s41467-019-10830-9.
Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U. K., Kirchhoff, F., & Kettenmann, H. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1), 72-86.
Oberheim, N. A., Goldman, S. A., & Nedergaard, M. (2012). Heterogeneity of astrocytic form and function. Methods in Molecular Biology, 814, 23-45. https://doi.org/10.1007/978-1-61779-452-0_3.
Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H. C., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A., & Nedergaard, M. (2009). Uniquely hominid features of adult human astrocytes. The Journal of Neuroscience, 29(10), 3276-3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009.
Ogata, K., & Kosaka, T. (2002). Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience, 113(1), 221-233. https://doi.org/10.1016/S0306-4522(02)00041-6.
Oliveira, J. F., & Araque, A. (2022). Astrocyte regulation of neural circuit activity and network states. Glia, 70, 1455-1466. https://doi.org/10.1002/glia.24178.
Oliveira, J. F., Sardinha, V. M., Guerra-Gomes, S., Araque, A., & Sousa, N. (2015). Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends in Neurosciences, 38(9), 535-549. https://doi.org/10.1016/j.tins.2015.07.006.
Panatier, A., Theodosis, D. T., Mothet, J.-P., Touquet, B., Pollegioni, L., Poulain, D. A., & Oliet, S. H. R. (2006). Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell, 125(4), 775-784. https://doi.org/10.1016/j.cell.2006.02.051.
Pankratov, Y., & Lalo, U. (2015). Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Frontiers in Cellular Neuroscience, 9. https://doi.org/10.3389/fncel.2015.00230.
Papouin, T., Dunphy, J. M., Tolman, M., Dineley, K. T., & Haydon, P. G. (2017). Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron, 94(4), 840-854.e7. https://doi.org/10.1016/j.neuron.2017.04.021.
Papouin, T., Henneberger, C., Rusakov, D. A., & Oliet, S. H. R. (2017). Astroglial versus neuronal D-serine: Fact checking. Trends in Neurosciences, 40(9), 517-520. https://doi.org/10.1016/j.tins.2017.05.007.
Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J.-Y., Takano, H., Moss, S. J., McCarthy, K., & Haydon, P. G. (2005). Astrocytic purinergic signaling coordinates synaptic networks. Science, 310(5745), 113-116. https://doi.org/10.1126/science.1116916.
Paxinos, G., & Franklin, K. B. J. (2001). The mouse brain in stereotaxic coordinates (2nd ed.). Academic Press.
Refaeli, R., Doron, A., Benmelech-Chovav, A., Groysman, M., Kreisel, T., Loewenstein, Y., & Goshen, I. (2021). Features of hippocampal astrocytic domains and their spatial relation to excitatory and inhibitory neurons. Glia, 69(10), 2378-2390. https://doi.org/10.1002/glia.24044.
Robin, L. M., da Cruz, J. F. O., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., Busquets-Garcia, A., Bellocchio, L., Soria-Gomez, E., Papouin, T., Varilh, M., Sherwood, M. W., Belluomo, I., Balcells, G., Matias, I., Bosier, B., Drago, F., Eeckhaut, A. V., Smolders, I., Georges, F., … Marsicano, G. (2018). Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron, 98(5), 935-944.e5. https://doi.org/10.1016/j.neuron.2018.04.034.
Rusakov, D. A., Bard, L., Stewart, M. G., & Henneberger, C. (2014). Diversity of astroglial functions alludes to subcellular specialisation. Trends in Neurosciences, 37(4), 228-242. https://doi.org/10.1016/j.tins.2014.02.008.
Sakers, K., Lake, A. M., Khazanchi, R., Ouwenga, R., Vasek, M. J., Dani, A., & Dougherty, J. D. (2017). Astrocytes locally translate transcripts in their peripheral processes. Proceedings of the National Academy of Sciences of the United States of America, 114(19), E3830-E3838. https://doi.org/10.1073/pnas.1617782114.
Salmon, C. K., Syed, T. A., Kacerovsky, J. B., Alivodej, N., Schober, A. L., Sloan, T. F. W., Pratte, M. T., Rosen, M. P., Green, M., Chirgwin-Dasgupta, A., Mehta, S., Jilani, A., Wang, Y., Vali, H., Mandato, C. A., Siddiqi, K., & Murai, K. K. (2023). Organizing principles of astrocytic nanoarchitecture in the mouse cerebral cortex. Current Biology, 33(5), 957-972. https://doi.org/10.1016/j.cub.2023.01.043.
Santello, M., Toni, N., & Volterra, A. (2019). Astrocyte function from information processing to cognition and cognitive impairment. Nature Neuroscience, 22(2), Article 2. https://doi.org/10.1038/s41593-018-0325-8.
Sardinha, V. M., Guerra-Gomes, S., Caetano, I., Tavares, G., Martins, M., Reis, J. S., Correia, J. S., Teixeira-Castro, A., Pinto, L., Sousa, N., & Oliveira, J. F. (2017). Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia, 65(12), 1944-1960. https://doi.org/10.1002/glia.23205.
Stogsdill, J. A., Ramirez, J., Liu, D., Kim, Y. H., Baldwin, K. T., Enustun, E., Ejikeme, T., Ji, R.-R., & Eroglu, C. (2017). Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature, 551(7679), 192-197. https://doi.org/10.1038/nature24638.
Sultan, S., Li, L., Moss, J., Petrelli, F., Cassé, F., Gebara, E., Lopatar, J., Pfrieger, F. W., Bezzi, P., Bischofberger, J., & Toni, N. (2015). Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron, 88(5), 957-972. https://doi.org/10.1016/j.neuron.2015.10.037.
Takata, N., Mishima, T., Hisatsune, C., Nagai, T., Ebisui, E., Mikoshiba, K., & Hirase, H. (2011). Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity In vivo. The Journal of Neuroscience, 31(49), 18155-18165. https://doi.org/10.1523/JNEUROSCI.5289-11.2011.
Tavares, G., Martins, M., Correia, J. S., Sardinha, V. M., Guerra-Gomes, S., Neves, S. P. d., Marques, F., Sousa, N., & Oliveira, J. F. (2017). Employing an open-source tool to assess astrocyte tridimensional structure. Brain Structure and Function, 222(4), 1989-1999. https://doi.org/10.1007/s00429-016-1316-8.
Torres-Ceja, B., & Olsen, M. L. (2022). A closer look at astrocyte morphology: Development, heterogeneity, and plasticity at astrocyte leaflets. Current Opinion in Neurobiology, 74, 102550. https://doi.org/10.1016/j.conb.2022.102550.
Wilhelmsson, U., Bushong, E. A., Price, D. L., Smarr, B. L., Phung, V., Terada, M., Ellisman, M. H., & Pekny, M. (2006). Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17513-17518. https://doi.org/10.1073/pnas.0602841103.
Wolosker, H., Balu, D. T., & Coyle, J. T. (2016). The rise and fall of the d-serine-mediated gliotransmission hypothesis. Trends in Neurosciences, 39(11), 712-721. https://doi.org/10.1016/j.tins.2016.09.007.
Xu, G., Wang, W., & Zhou, M. (2014). Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region. Hippocampus, 24(4), 383-395. https://doi.org/10.1002/hipo.22232.
Yang, Y., Ge, W., Chen, Y., Zhang, Z., Shen, W., Wu, C., Poo, M., & Duan, S. (2003). Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15194-15199. https://doi.org/10.1073/pnas.2431073100.
Young, K. M., Mitsumori, T., Pringle, N., Grist, M., Kessaris, N., & Richardson, W. D. (2010). An Fgfr3-iCreERT2 transgenic mouse line for studies of neural stem cells and astrocytes. Glia, 58(8), 943-953. https://doi.org/10.1002/glia.20976.
Zehnder, T., Petrelli, F., Romanos, J., De Oliveira Figueiredo, E. C., Lewis, T. L., Déglon, N., Polleux, F., Santello, M., & Bezzi, P. (2021). Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Reports, 35(2), 108952. https://doi.org/10.1016/j.celrep.2021.108952.
Zhang, Q., Pangršič, T., Kreft, M., Kržan, M., Li, N., Sul, J.-Y., Halassa, M., Van Bockstaele, E., Zorec, R., & Haydon, P. G. (2004). Fusion-related release of glutamate from astrocytes. Journal of Biological Chemistry, 279(13), 12724-12733. https://doi.org/10.1074/jbc.M312845200.
Zhou, P., Zhang, Y., Ma, Q., Gu, F., Day, D. S., He, A., Zhou, B., Li, J., Stevens, S. M., Romo, D., & Pu, W. T. (2013). Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15395-15400. https://doi.org/10.1073/pnas.1304124110.
Zisis, E., Keller, D., Kanari, L., Arnaudon, A., Gevaert, M., Delemontex, T., Coste, B., Foni, A., Abdellah, M., Calì, C., Hess, K., Magistretti, P. J., Schürmann, F., & Markram, H. (2021). Digital reconstruction of the neuro-glia-vascular architecture. Cerebral Cortex, 31(12), 5686-5703. https://doi.org/10.1093/cercor/bhab254.
فهرسة مساهمة: Keywords: astrocyte; dorsal; hippocampus; morphology; skeleton; ventral
تواريخ الأحداث: Date Created: 20230323 Date Completed: 20230510 Latest Revision: 20230512
رمز التحديث: 20231215
DOI: 10.1002/glia.24362
PMID: 36949723
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-1136
DOI:10.1002/glia.24362