دورية أكاديمية

Acetylcholinesterase Inhibitory Activity of Modified Lupane, Oleanane, and Ursane A-seco-Triterpenoids.

التفاصيل البيبلوغرافية
العنوان: Acetylcholinesterase Inhibitory Activity of Modified Lupane, Oleanane, and Ursane A-seco-Triterpenoids.
المؤلفون: Petrova AV; Ufa Institute of Chemistry of the Ufa Federal Research Center of the, Russian Academy of Sciences, 71, prospect Octyabrya, Ufa, 450054, Russian Federation., Kazakova OB; Ufa Institute of Chemistry of the Ufa Federal Research Center of the, Russian Academy of Sciences, 71, prospect Octyabrya, Ufa, 450054, Russian Federation., Nazarov IS; Ufa Institute of Chemistry of the Ufa Federal Research Center of the, Russian Academy of Sciences, 71, prospect Octyabrya, Ufa, 450054, Russian Federation., Csuk R; Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany., Heise NV; Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
المصدر: Chemistry & biodiversity [Chem Biodivers] 2023 Apr; Vol. 20 (4), pp. e202300185. Date of Electronic Publication: 2023 Mar 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Verlag Helvetica Chimica Acta Country of Publication: Switzerland NLM ID: 101197449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1612-1880 (Electronic) Linking ISSN: 16121872 NLM ISO Abbreviation: Chem Biodivers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Zürich, Switzerland : Hoboken, NJ : Verlag Helvetica Chimica Acta ; Distributed in the USA by Wiley, c2004-
مواضيع طبية MeSH: Acetylcholinesterase*/metabolism , Triterpenes*/pharmacology, Molecular Structure ; Structure-Activity Relationship ; Lupanes ; Cholinesterase Inhibitors/pharmacology
مستخلص: A series of new lupane, ursane, and oleanane type triterpenic A-seco-derivatives containing bromo-, azido-, alkyne-, 1H-tetrazol-5-yl-, 5-methyloxazol-2-yl-, N-(4-(4-methylpiperazin-1-yl)but-2-yn-1-yl), and a carbonyl group at C2, C24, C28, C30 positions has been synthesized. The bioactivity was evaluated by Ellman's method, and the results showed that most of the compounds displayed moderate acetylcholinesterase inhibitory activities in vitro. Among them, A-seco-derivatives of 28-oxo-allobetuline and betulinic acid with bromo- and azido-groups exhibited the most potent inhibitory activity against AChE. Extra experiments showed methyl 2-cyano-3,4-seco-dibromo- and 2-cyano-3,4-seco-diazido-derivatives of betulinic acid as mixed-type inhibitors, with Ki values as low as K i =0.18 μM and K i =0.21 μM, respectively.
(© 2023 Wiley-VHCA AG, Zurich, Switzerland.)
References: G. T. Grossberg, ‘Cholinesterase inhibitors for the treatment of Alzheimer's disease: getting on and staying on’, Curr. Ther. Res. Clin. Exp. 2003, 64, 216-235.
M. Mehta, A. Adem, M. Sabbagh, ‘New acetylcholinesterase inhibitors for Alzheimer's disease’, Int. J. Alzheimers Dis. 2012, 2012, 728983.
S. Xiao, Z. Tian, Y. Wang, L. Si, L. Zhang, D. Zhou, ‘Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives’, Med. Res. Rev. 2018, 38, 951-976.
Y. Ren, A. D. Kinghorn, ‘Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity’, Planta Med. 2019, 85, 802-814.
M. Zhou, R. H. Zhang, M. Wang, G. B. Xu, S. G. Liao, ‘Prodrugs of triterpenoids and their derivatives’, Eur. J. Med. Chem. 2017, 131, 222-236.
T. Guo, S. Wu, S. Guo, L. Bai, Q. Liu, N. Bai, ‘Synthesis and evaluation of a series of oleanolic acid saponins as α-glucosidase and α-amylase inhibitors’, Arch. Pharm. (Weinheim). 2015, 348, 615-628.
S. Schwarz, S. D. Lucas, S. Sommerwerk, R. Csuk, ‘Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases’, Bioorg. Med. Chem. 2014, 22, 3370-3378.
A. Loesche, A. Köwitsch, S. D. Lucas, Z. Al-Halabi, W. Sippl, A. Al-Harrasi, R. Csuk, ‘Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential’, Bioorg. Chem. 2019, 85, 23-32.
B. Çulhaoğlu, G. Yapar, T. Dirmenci, G. Topçu, ‘Bioactive constituents of Salvia chrysophylla Stapf’, Nat. Prod. Res. 2013, 27, 438-447.
M. A. Ado, M. Maulidiani, I. S. Ismail, H. M. Ghazali, K. Shaari, F. Abas, ‘Acetylcholinesterase and α-glucosidase inhibitory compounds from Callicarpa maingayi’, Nat. Prod. Res. 2021, 35, 2992-2996.
N. Jamila, M. Khairuddean, K. K. Yeong, H. Osman, V. Murugaiyah, ‘Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana’, J. Enzyme Inhib. Med. Chem. 2015, 30, 133-139.
Y. K. Chung, H. J. Heo, E. K. Kim, H. K. Kim, T. L. Huh, Y. Lim, S. K. Kim, D. H. Shin, ‘Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase’, Mol. Cells. 2001, 11, 137-143.
J. H. Lee, K. T. Lee, J. H. Yang, N. I. Baek, D. K. Kim, ‘Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel’, Arch. Pharmacal Res. 2004, 27, 53-56.
I. H. Jung, S. E. Jang, E. H. Joh, J. Chung, M. J. Han, D. H. Kim, ‘Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice’, Phytomedicine. 2012, 20, 84-88.
N. Heise, S. Friedrich, V. Temml, D. Schuster, B. Siewert, R. Csuk, ‘N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase’, Eur. J. Med. Chem. 2022, 227, 113947.
L. Heller, M. Kahnt, A. Loesche, P. Grabandt, S. Schwarz, W. Brandt, R. Csuk, ‘Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase’, Eur. J. Med. Chem. 2017, 126, 652-668.
A. Loesche, M. Kahnt, I. Serbian, W. Brandt, R. Csuk, ‘Triterpene-based carboxamides act as good inhibitors of butyrylcholinesterase’, Molecules. 2019, 24, 948.
A. V. Petrova, A. I. Poptsov, H. N. T. Thu, T. N. Van, E. F. Khusnutdinova, D. A. Babkov, O. B. Kazakova, ‘Synthesis, cytotoxicity, and α-glucosidase inhibitory activity of triterpenic and sitosterol tetrazole derivatives’, Chem. Heterocycl. Compd. 2021, 57, 920-928.
O. Kazakova, I. Smirnova, T. Lopatina, G. Giniyatullina, A. Petrova, E. Khusnutdinova, R. Csuk, I. Serbian, A. Loesche, ‘Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids’, Bioorg. Chem. 2020, 101, 104001.
A. Petrova, ‘Synthesis of bromo and azidoderivatives of 2-cyano-3,4-seco-4(23)-en-28-oxo-allobetulone’, Izvestiya ufimskogo nauchnogo tsentra RAN. 2020, 1, 32-35.
I. A. Tolmacheva, A. V. Nazarov, D. V. Eroshenko, V. V. Grishko, ‘Synthesis, cytotoxic evaluation, and molecular docking studies of the semi-synthetic “triterpenoid-steroid” hybrids’, Steroids. 2018, 140, 131-143.
E. F. Khusnutdinova, A. V. Petrova, A. N. Lobov, O. S. Kukovinets, D. S. Baev, O. B. Kazakova, ‘Synthesis of C17-[5-methyl-1,3]-oxazoles by N-propargylation of triterpenic acids and evaluation of their cytotoxic activity’, Nat. Prod. Res. 2021, 35, 3850-3858.
E. F. Khusnutdinova, T. V. Lopatina, O. B. Kazakova, G. F. Akhmatshina, O. S. Kukovinets, ‘Synthesis and cytotoxicity of triterpene A-seco-acid propargylamides’, Chem. Nat. Compd. 2014, 50, 853-856.
L. Borkova, J. Hodon, M. Urban, ‘Synthesis of betulinic acid derivatives with modified A-ring and their development as potential drug candidates’, Asian J. Org. Chem. 2018, 7, 1542-1560.
L. Heller, S. Schwarz, A. Obernauer, R. Csuk, ‘Allobetulin derived seco-oleananedicarboxylates act as inhibitors of acetylcholinesterase’, Bioorg. Med. Chem. Lett. 2015, 25, 2654-2656.
G. A. Tolstikov, M. I. Goryaev, I. P. Shumov, ‘Triterpenoids. XVII. Synthesis of A-aza-derivatives of glycyrrhetic acid’, Russ. J. Org. Chem. 1969, 5, 1625-1630.
B. Bednarczyk-Cwynar, P. Ruszkowski, T. Bobkiewicz-Kozlowska, L. Zaprutko, ‘Oleanolic Acid A-lactams Inhibit the Growth of HeLa, KB, MCF-7 and Hep-G2 Cancer Cell Line at Micromolar Concentrations’, Anti-Cancer Agents Med. Chem. 2016, 16, 579-592.
L. Dalla-Vechia, A. Dassonville-Klimpt, P. Grellier, P. Sonnet, G. Gosmann, S. C. B. Gnoatto, ‘The Beckmann rearrangement applied to ursolic acid with antimalarial activity in medicinal chemistry studies’, Lett. Org. Chem. 2012, 9, 92-95.
R. G. S. Subba, P. Kondaiah, S. K. Singh, P. Ravanan, M. B. Sporn, ‘Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity’, Tetrahedron. 2008, 64, 11541-11548.
معلومات مُعتمدة: 22-73-00266 Russian Science Foundation; 1022040400061-8-1.4.1;1.4.3 Russian Science Foundation
فهرسة مساهمة: Keywords: A-seco-triterpenoids; Alzheimer's disease; Beckmann rearrangement; acetylcholinesterase inhibitor; natural products
المشرفين على المادة: 0 (ursane)
EC 3.1.1.7 (Acetylcholinesterase)
0 (Triterpenes)
0 (oleanane)
0 (Lupanes)
0 (Cholinesterase Inhibitors)
تواريخ الأحداث: Date Created: 20230324 Date Completed: 20230428 Latest Revision: 20230428
رمز التحديث: 20240829
DOI: 10.1002/cbdv.202300185
PMID: 36960660
قاعدة البيانات: MEDLINE
الوصف
تدمد:1612-1880
DOI:10.1002/cbdv.202300185