دورية أكاديمية

APOE and immunity: Research highlights.

التفاصيل البيبلوغرافية
العنوان: APOE and immunity: Research highlights.
المؤلفون: Kloske CM; Alzheimer's Association, Chicago, Illinois, USA., Barnum CJ; INmune Bio, Inc, La Jolla, California, USA., Batista AF; Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.; Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA., Bradshaw EM; Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA., Brickman AM; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA., Bu G; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA., Dennison J; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA., Gearon MD; Department of Physiology, University of Kentucky, Lexington, Kentucky, USA., Goate AM; Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Haass C; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany., Heneka MT; Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg., Hu WT; Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA., Huggins LKL; Department of Biology, Duke University, Durham, North Carolina, USA.; Yale School of Medicine, New Haven, Connecticut, USA., Jones NS; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA., Koldamova R; EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA., Lemere CA; Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.; Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA., Liddelow SA; Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA., Marcora E; Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Marsh SE; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.; Harvard Medical School, Boston, Massachusetts, USA.; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA., Nielsen HM; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden., Petersen KK; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA., Petersen M; Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA., Piña-Escudero SD; Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA., Qiu WQ; Boston University School of Medicine, Boston, Massachusetts, USA., Quiroz YT; Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA., Reiman E; Banner Alzheimer's Institute, Phoenix, Arizona, USA.; Banner Research, Phoenix, Arizona, USA., Sexton C; Alzheimer's Association, Chicago, Illinois, USA., Tansey MG; Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA., Tcw J; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA., Teunissen CE; Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Tijms BM; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands., van der Kant R; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands.; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands., Wallings R; CTRND, Department of Neuroscience, University of Florida, Florida, USA., Weninger SC; FBRI, Cambridge, Massachusetts, USA., Wharton W; School of Nursing, EmoryUniversity, Atlanta, Georgia, USA., Wilcock DM; Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA., Wishard TJ; Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA., Worley SL; Independent science writer, Bryn Mawr, Pennsylvania, USA., Zetterberg H; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.; UK Dementia Research Institute at UCL, London, UK.; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China., Carrillo MC; Alzheimer's Association, Chicago, Illinois, USA.
المصدر: Alzheimer's & dementia : the journal of the Alzheimer's Association [Alzheimers Dement] 2023 Jun; Vol. 19 (6), pp. 2677-2696. Date of Electronic Publication: 2023 Mar 28.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Ltd Country of Publication: United States NLM ID: 101231978 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-5279 (Electronic) Linking ISSN: 15525260 NLM ISO Abbreviation: Alzheimers Dement Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Hoboken, NJ : John Wiley & Sons, Ltd.
Original Publication: Orlando, FL : Elsevier, Inc.
مواضيع طبية MeSH: Alzheimer Disease*/pathology, Humans ; Microglia/pathology ; Inflammation ; Apolipoproteins E/genetics
مستخلص: Introduction: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias.
Methods: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry.
Results: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]).
Discussion: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
(© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.)
References: Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease. Acta Neuropathol (Berl). 2015;129:167-182. doi:10.1007/s00401-014-1375-y.
Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271-278. doi:10.1016/0197-4580(95)00021-6. discussion 278-284.
Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement J Alzheimers Assoc. 2018;14:535-562. doi:10.1016/j.jalz.2018.02.018.
Lanoiselée H-M, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med. 2017;14:e1002270. doi:10.1371/journal.pmed.1002270.
Wu L, Rosa-Neto P, Hsiung G-YR, et al. Early-onset familial Alzheimer's disease (EOFAD). Can J Neurol Sci J Can Sci Neurol. 2012;39:436-445. doi:10.1017/s0317167100013949.
Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer's disease. Biol Psychiatry. 2018;83:300-310. doi:10.1016/j.biopsych.2017.05.014.
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993;261:921-923. doi:10.1126/science.8346443.
Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993;90:1977-1981. doi:10.1073/pnas.90.5.1977.
Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993;43:1467-1472. doi:10.1212/wnl.43.8.1467.
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: aPOE and TREM2 in the spotlight. Nat Rev Immunol. 2018;18:759-772. doi:10.1038/s41577-018-0051-1.
Kloske CM, Dugan AJ, Weekman EM, et al. Inflammatory pathways are impaired in Alzheimer disease and differentially associated With apolipoprotein E status. J Neuropathol Exp Neurol. 2021;80:922-932. doi:10.1093/jnen/nlab085.
Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med Berl Ger. 2016;94:739-746. doi:10.1007/s00109-016-1427-y.
Chen Y, Strickland MR, Soranno A, Holtzman DM. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron. 2021;109:205-221. doi:10.1016/j.neuron.2020.10.008.
de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol. 2008;3:505-530. doi:10.2217/17460875.3.5.505.
Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66:616-623. doi:10.1002/iub.1314.
Qian J, Wolters FJ, Beiser A, et al. APOE-related risk of mild cognitive impairment and dementia for prevention trials: an analysis of four cohorts. PLoS Med. 2017;14:e1002254. doi:10.1371/journal.pmed.1002254.
Garatachea N, Emanuele E, Calero M, et al. ApoE gene and exceptional longevity: insights from three independent cohorts. Exp Gerontol. 2014;53:16-23. doi:10.1016/j.exger.2014.02.004.
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res. 2009;50:S183-S188. doi:10.1194/jlr.R800069-JLR200. Suppl.
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: trafficking, receptors, and resistance. Neurobiol Dis. 2020;137:104755. doi:10.1016/j.nbd.2020.104755.
Zhao N, Liu C-C, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron. 2017;96:115-129. doi:10.1016/j.neuron.2017.09.003. e5.
Jagust WJ, Landau SM. Initiative F the ADN. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci. 2012;32:18227-18233. doi:10.1523/JNEUROSCI.3266-12.2012.
Wu L, Zhang X, Zhao L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer's disease risk reduction and early intervention. J Neurosci Off J Soc Neurosci. 2018;38:6665-6681. doi:10.1523/JNEUROSCI.2262-17.2018.
Walker JM, Harrison FE. Shared neuropathological characteristics of obesity, Type 2 diabetes and Alzheimer's disease: impacts on cognitive decline. Nutrients. 2015;7:7332-7357. doi:10.3390/nu7095341.
Mosconi L, Rinne JO, Tsui WH, et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer's parents. Neurobiol Aging. 2013;34:22-34. doi:10.1016/j.neurobiolaging.2012.03.002.
Burns CM, Kaszniak AW, Chen K, et al. Longitudinal changes in serum glucose levels are associated with metabolic changes in Alzheimer's disease related brain regions. J Alzheimers Dis JAD. 2018;62:833-840. doi:10.3233/JAD-170767.
Bangen KJ, Himali JJ, Beiser AS, et al. Interaction between midlife blood glucose and APOE genotype predicts later Alzheimer's disease pathology. J Alzheimers Dis JAD. 2016;53:1553-1562. doi:10.3233/JAD-160163.
Nielsen HM, Chen K, Lee W, et al. Peripheral apoE isoform levels in cognitively normal APOE ε3/ε4 individuals are associated with regional gray matter volume and cerebral glucose metabolism. Alzheimers Res Ther. 2017;9:5. doi:10.1186/s13195-016-0231-9.
Edlund AK, Chen K, Lee W, et al. Plasma apolipoprotein E3 and glucose levels are associated in APOE ɛ3/ɛ4 carriers. J Alzheimers Dis JAD. 2021;81:339-354. doi:10.3233/JAD-210065.
Yarchoan M, Louneva N, Xie SX, et al. Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. J Neurol Sci. 2013;333:9-12. doi:10.1016/j.jns.2013.05.028.
Wang Y, Grydeland H, Roe JM, et al. Associations of circulating C-reactive proteins, APOE ε4, and brain markers for Alzheimer's disease in healthy samples across the lifespan. Brain Behav Immun. 2022;100:243-253. doi:10.1016/j.bbi.2021.12.008.
Association of Chronic Low-grade Inflammation With Risk of Alzheimer Disease in ApoE4 Carriers | Dementia and Cognitive Impairment | JAMA Network Open | JAMA Network n.d. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2707427 (accessed November 30, 2022).
Tao Q, Alvin Ang TF, Akhter-Khan SC, et al. Impact of C-reactive protein on cognition and Alzheimer disease biomarkers in homozygous apolipoprotein E ɛ4 carriers. Neurology. 2021. doi:10.1212/WNL.0000000000012512.
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14:388-405. doi:10.1016/S1474-4422(15)70016-5.
Henstridge CM, Tzioras M, Paolicelli RC. Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration. Front Cell Neurosci. 2019;13:63. doi:10.3389/fncel.2019.00063.
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol. 2014;50:534-544. doi:10.1007/s12035-014-8657-1.
Morgan AR, Touchard S, Leckey C, et al. Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimers Dement J Alzheimers Assoc. 2019;15:776-787. doi:10.1016/j.jalz.2019.03.007.
Edison P, Donat CK, Sastre M. In vivo imaging of glial activation in Alzheimer's disease. Front Neurol. 2018;9:625. doi:10.3389/fneur.2018.00625.
Dani M, Wood M, Mizoguchi R, et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain. 2018;141:2740-2754. doi:10.1093/brain/awy188.
Konijnenberg E, Tijms BM, Gobom J, et al. APOE ε4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease. Alzheimers Res Ther. 2020;12:65. doi:10.1186/s13195-020-00628-z.
Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM. Neuroinflammatory phenotype in early Alzheimer's disease. Neurobiol Aging. 2013;34:1051-1059. doi:10.1016/j.neurobiolaging.2012.09.012.
Kloske CM, Wilcock DM. The important interface between apolipoprotein E and neuroinflammation in Alzheimer's disease. Front Immunol. 2020;11:754. doi:10.3389/fimmu.2020.00754.
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586. doi:10.3389/fimmu.2018.00586.
Guttenplan KA, Weigel MK, Prakash P, et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature. 2021;599:102-107. doi:10.1038/s41586-021-03960-y.
Marsh SE, Abud EM, Lakatos A, et al. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A. 2016;113:E1316-E1325. doi:10.1073/pnas.1525466113.
Kim K, Wang X, Ragonnaud E, et al. Therapeutic B-cell depletion reverses progression of Alzheimer's disease. Nat Commun. 2021;12:2185. doi:10.1038/s41467-021-22479-4.
Cugurra A, Mamuladze T, Rustenhoven J, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373:eabf7844. doi:10.1126/science.abf7844.
Brioschi S, Wang W-L, Peng V, et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science. 2021;373:eabf9277. doi:10.1126/science.abf9277.
Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: new concepts. Brain Res Rev. 2007;53:344-354. doi:10.1016/j.brainresrev.2006.11.002.
Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe. 2009;6:10-21. doi:10.1016/j.chom.2009.06.007.
Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176. doi:10.1038/ncomms7176.
Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J. 2019;38:e99430. doi:10.15252/embj.201899430.
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487. doi:10.1038/nature21029.
Barbar L, Jain T, Zimmer M, et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron. 2020;107:436-453. doi:10.1016/j.neuron.2020.05.014. e12.
Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131-143. doi:10.1038/nn.3599.
Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease. Cell. 2017;169:1276-1290. doi:10.1016/j.cell.2017.05.018. e17.
Nugent AA, Lin K, van Lengerich B, et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron. 2020;105:837-854. doi:10.1016/j.neuron.2019.12.007. e9.
Parhizkar S, Arzberger T, Brendel M, et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci. 2019;22:191-204. doi:10.1038/s41593-018-0296-9.
Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging microglia biology defines novel therapeutic approaches for Alzheimer's disease - ScienceDirect 2020. Neuron. 2020;108:801-821. https://www.sciencedirect.com/science/article/pii/S0896627320307534. accessed May 31, 2022.
Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19:987-991. doi:10.1038/nn.4338.
Nott A, Holtman IR, Coufal NG, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science. 2019;366:1134-1139. doi:10.1126/science.aay0793.
Abud EM, Ramirez RN, Martinez ES, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278-293. doi:10.1016/j.neuron.2017.03.042. e9.
Marsh SE, Walker AJ, Kamath T, et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci. 2022;25:306-316. doi:10.1038/s41593-022-01022-8.
Foo LC, Allen NJ, Bushong EA, et al. Development of a method for the purification and culture of rodent astrocytes. Neuron. 2011;71:799-811. doi:10.1016/j.neuron.2011.07.022.
Masuda T, Sankowski R, Staszewski O, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388-392. doi:10.1038/s41586-019-0924-x.
Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat Med. 2020;26:131-142. doi:10.1038/s41591-019-0695-9.
Kamath T, Abdulraouf A, Burris SJ, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nat Neurosci. 2022;25:588-595. doi:10.1038/s41593-022-01061-1.
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron. 2017;94:759-773. doi:10.1016/j.neuron.2017.04.043. e8.
Gosselin D, Skola D, Coufal NG, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356:eaal3222. doi:10.1126/science.aal3222.
Bennett ML, Bennett FC, Liddelow SA, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 2016;113:E1738-E1746. doi:10.1073/pnas.1525528113.
Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. 2021;24:1475-1487. doi:10.1038/s41593-021-00905-6.
Bayraktar OA, Bartels T, Holmqvist S, et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci. 2020;23:500-509. doi:10.1038/s41593-020-0602-1.
Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253-271. doi:10.1016/j.immuni.2018.11.004. e6.
Sadick JS, O'Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease. Neuron. 2022;110:1788-1805. doi:10.1016/j.neuron.2022.03.008. e10.
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019;570:332-337. doi:10.1038/s41586-019-1195-2.
Li R, Wang X, He P. The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer's disease: a systematic review and meta-analysis. Exp Ther Med. 2021;21:347. doi:10.3892/etm.2021.9778.
Fitz NF, Nam KN, Wolfe CM, et al. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun. 2021;12:3416. doi:10.1038/s41467-021-23762-0.
Fitz NF, Wolfe CM, Playso BE, et al. Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Mol Neurodegener. 2020;15:41. doi:10.1186/s13024-020-00394-4.
Giannisis A, Al-Grety A, Carlsson H, et al. Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther. 2022;14:115. doi:10.1186/s13195-022-01058-9.
Lautner R, Insel PS, Skillbäck T, et al. Preclinical effects of APOE ε4 on cerebrospinal fluid Aβ42 concentrations. Alzheimers Res Ther. 2017;9:87. doi:10.1186/s13195-017-0313-3.
Lautner R, Palmqvist S, Mattsson N, et al. Apolipoprotein E genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for Alzheimer disease. JAMA Psychiatry. 2014;71:1183-1191. doi:10.1001/jamapsychiatry.2014.1060.
Apostolova LG, Hwang KS, Kohannim O, et al. ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease. NeuroImage Clin. 2014;4:461-472. doi:10.1016/j.nicl.2013.12.012.
Tijms BM, Gobom J, Reus L, et al. Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics. Brain J Neurol. 2020;143:3776-3792. doi:10.1093/brain/awaa325.
Hu WT, Ozturk T, Kollhoff A, Wharton W, Christina Howell J. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer's disease. Nat Commun. 2021;12:4001. doi:10.1038/s41467-021-24220-7.
Wolters FJ, Yang Q, Biggs ML, et al. The impact of APOE genotype on survival: results of 38,537 participants from six population-based cohorts (E2-CHARGE). PLoS ONE. 2019;14:e0219668. doi:10.1371/journal.pone.0219668.
Appiah F, Charnigo RJ. A comparison of methods for predicting future cognitive status: mixture modeling, latent class analysis, and competitors. Alzheimer Dis Assoc Disord. 2021;35:306-314. doi:10.1097/WAD.0000000000000462.
Robinson AC, Davidson YS, Roncaroli F, et al. Influence of APOE genotype on mortality and cognitive impairment. J Alzheimers Dis Rep. 2020;4:281-286. doi:10.3233/ADR-200203.
Abondio P, Sazzini M, Garagnani P, et al. The genetic variability of APOE in different human populations and its implications for longevity. Genes. 2019;10:222. doi:10.3390/genes10030222.
Granot-Hershkovitz E, Tarraf W, Kurniansyah N, et al. APOE alleles’ association with cognitive function differs across Hispanic/Latino groups and genetic ancestry in the study of Latinos-investigation of neurocognitive aging (HCHS/SOL). Alzheimers Dement. 2021;17:466-474. doi:10.1002/alz.12205.
Schindler SE, Cruchaga C, Joseph A, et al. African Americans have differences in CSF soluble TREM2 and associated genetic variants. Neurol Genet. 2021;7:e571. doi:10.1212/NXG.0000000000000571.
Ferretti MT, Iulita MF, Cavedo E, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14:457-469. doi:10.1038/s41582-018-0032-9.
Mazure CM, Swendsen J. Sex differences in Alzheimer's disease and other dementias. Lancet Neurol. 2016;15:451-452. doi:10.1016/S1474-4422(16)00067-3.
Kodama L, Guzman E, Etchegaray JI, et al. Microglial microRNAs mediate sex-specific responses to tau pathology. Nat Neurosci. 2020;23:167-171. doi:10.1038/s41593-019-0560-7.
Hohman TJ, Dumitrescu L, Barnes LL, et al. Sex-specific association of apolipoprotein E with cerebrospinal fluid levels of Tau. JAMA Neurol. 2018;75:989-998. doi:10.1001/jamaneurol.2018.0821.
Babapour Mofrad R, Tijms BM, Scheltens P, et al. Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE ε4 genotype. Neurology. 2020;95:e2378-e2388. doi:10.1212/WNL.0000000000010629.
Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences. Clin Epidemiol. 2014;6:37-48. doi:10.2147/CLEP.S37929.
Zahodne LB, Sharifian N, Kraal AZ, et al. Longitudinal associations between racial discrimination and brain aging among black older adults - Zahodne - 2021 - Alzheimer's & Dementia - Wiley Online Library n.d. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.051948 (accessed May 31, 2022).
Mayeda ER, Glymour MM, Quesenberry CP, Whitmer RA. Inequalities in dementia incidence between six racial and ethnic groups over 14 years. Alzheimers Dement J Alzheimers Assoc. 2016;12:216-224. doi:10.1016/j.jalz.2015.12.007.
Tang MX, Cross P, Andrews H, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56:49-56. doi:10.1212/wnl.56.1.49.
Manly JJ, Schupf N, Tang M-X, Stern Y. Cognitive decline and literacy among ethnically diverse elders. J Geriatr Psychiatry Neurol. 2005;18:213-217. doi:10.1177/0891988705281868.
Steenland K, Goldstein FC, Levey A, Wharton W. A meta-analysis of Alzheimer's disease incidence and prevalence comparing African-Americans and Caucasians. J Alzheimers Dis JAD. 2016;50:71-76. doi:10.3233/JAD-150778.
Wharton W, Goldstein FC, Zhao L, Steenland K, Levey AI, Hajjar I. Modulation of renin-angiotensin system may slow conversion from mild cognitive umpairment to Alzheimer's disease. J Am Geriatr Soc. 2015;63:1749-1756. doi:10.1111/jgs.13627.
Malik M, Parikh I, Vasquez JB, et al. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener. 2015;10:52. doi:10.1186/s13024-015-0048-1.
Song W, Hooli B, Mullin K, et al. Alzheimer's disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimers Dement J Alzheimers Assoc. 2017;13:381-387. doi:10.1016/j.jalz.2016.07.004.
Andreone BJ, Przybyla L, Llapashtica C, et al. Alzheimer's-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat Neurosci. 2020;23:927-938. doi:10.1038/s41593-020-0650-6.
Wang S, Mustafa M, Yuede CM, et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer's disease model. J Exp Med. 2020;217:e20200785. doi:10.1084/jem.20200785.
Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging microglia biology defines novel therapeutic approaches for Alzheimer's disease. Neuron. 2020;108:801-821. doi:10.1016/j.neuron.2020.09.029.
Schlepckow K, Monroe KM, Kleinberger G, et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol Med. 2020;12:e11227. doi:10.15252/emmm.201911227.
Meilandt WJ, Ngu H, Gogineni A, et al. Trem2 deletion reduces late-stage amyloid plaque accumulation, elevates the Aβ42:aβ40 ratio, and exacerbates axonal dystrophy and dendritic spine loss in the PS2APP Alzheimer's Mouse Model. J Neurosci Off J Soc Neurosci. 2020;40:1956-1974. doi:10.1523/JNEUROSCI.1871-19.2019.
Joshi P, Riffel F, Kumar S, et al. TREM2 modulates differential deposition of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits. Acta Neuropathol Commun. 2021;9:168. doi:10.1186/s40478-021-01263-x.
Price BR, Sudduth TL, Weekman EM, et al. Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves cognition in the 5XFAD model of amyloid deposition. J Neuroinflammation. 2020;17:238. doi:10.1186/s12974-020-01915-0.
Cignarella F, Filipello F, Bollman B, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol (Berl). 2020;140:513-534. doi:10.1007/s00401-020-02193-z.
Filipello F, Goldsbury C, You SF, Locca A, Karch CM, Piccio L. Soluble TREM2: innocent bystander or active player in neurological diseases? Neurobiol Dis. 2022;165:105630. doi:10.1016/j.nbd.2022.105630.
Arboleda-Velasquez JF, Lopera F, O'Hare M, et al. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25:1680-1983. doi:10.1038/s41591-019-0611-3.
Reiman EM, Arboleda-Velasquez JF, Quiroz YT, et al. Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667. doi:10.1038/s41467-019-14279-8.
Monsell SE, Kukull WA, Roher AE, et al. Characterizing apolipoprotein E ε4 carriers and noncarriers with the clinical diagnosis of mild to moderate Alzheimer dementia and minimal β-amyloid peptide plaques. JAMA Neurol. 2015;72:1124-1131. doi:10.1001/jamaneurol.2015.1721.
Reiman EM, Chen K, Liu X, et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2009;106:6820-6825. doi:10.1073/pnas.0900345106.
Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313:1924-1938. doi:10.1001/jama.2015.4668.
Decourt B, Lahiri DK, Sabbagh MN. Targeting tumor necrosis factor alpha for Alzheimer's disease. Curr Alzheimer Res. 2017;14:412-425. doi:10.2174/1567205013666160930110551.
Ekert JO, Gould RL, Reynolds G, Howard RJ. TNF alpha inhibitors in Alzheimer's disease: a systematic review. Int J Geriatr Psychiatry. 2018;33:688-694. doi:10.1002/gps.4871.
McAlpine FE, Tansey MG. Neuroinflammation and tumor necrosis factor signaling in the pathophysiology of Alzheimer's disease. J Inflamm Res. 2008;1:29-39. doi:10.2147/jir.s4397.
Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev. 2012;64:1004-1026. doi:10.1124/pr.112.005850.
De Sousa Rodrigues ME, Houser MC, Walker DI, et al. Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer's disease associated with obesity, metabolic syndrome, and type 2 diabetes. Alzheimers Res Ther. 2019;12:1. doi:10.1186/s13195-019-0546-4.
معلومات مُعتمدة: R01 AA016829 United States AA NIAAA NIH HHS; R37 AG027924 United States AG NIA NIH HHS; R01 AG066395 United States AG NIA NIH HHS; RF1 AG057181 United States AG NIA NIH HHS; R01 AG072489 United States AG NIA NIH HHS; RF1 AG058657 United States AG NIA NIH HHS; R01 AG067581 United States AG NIA NIH HHS; T32 AG000222 United States AG NIA NIH HHS; R01 AG007992 United States AG NIA NIH HHS; R01 AG054005 United States AG NIA NIH HHS; RF1 NS130834 United States NS NINDS NIH HHS; U01 AG066757 United States AG NIA NIH HHS; R01 AG077636 United States AG NIA NIH HHS; R01 AG066198 United States AG NIA NIH HHS; RF1 AG060057 United States AG NIA NIH HHS; U01 AG061356 United States AG NIA NIH HHS; R01 AG066203 United States AG NIA NIH HHS; R21 AG073882 United States AG NIA NIH HHS; R01 AG054046 United States AG NIA NIH HHS; P01 AG078116 United States AG NIA NIH HHS; R01 AG054491 United States AG NIA NIH HHS; R01 AG069453 United States AG NIA NIH HHS; U19 AG069701 United States AG NIA NIH HHS; R24 AG066599 United States AG NIA NIH HHS; RF1 AG058852 United States AG NIA NIH HHS; R01 AG076018 United States AG NIA NIH HHS; R24 AG063729 United States AG NIA NIH HHS; P30 AG059304 United States AG NIA NIH HHS; RF1 AG046205 United States AG NIA NIH HHS; U01 AG058635 United States AG NIA NIH HHS; R01 EY033353 United States EY NEI NIH HHS
فهرسة مساهمة: Keywords: APOE; Alzheimer's disease; TREM2; amyloid beta; astrocytes; biomarkers; dementia; inflammation; microglia; neurodegeneration; neuroglia; neuroinflammation; tau
المشرفين على المادة: 0 (Apolipoproteins E)
تواريخ الأحداث: Date Created: 20230328 Date Completed: 20230613 Latest Revision: 20240427
رمز التحديث: 20240427
DOI: 10.1002/alz.13020
PMID: 36975090
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-5279
DOI:10.1002/alz.13020