دورية أكاديمية

Three-plane description of astroglial architecture and gliovascular connections of area postrema in rat: Long tanycyte connections to other parts of brainstem.

التفاصيل البيبلوغرافية
العنوان: Three-plane description of astroglial architecture and gliovascular connections of area postrema in rat: Long tanycyte connections to other parts of brainstem.
المؤلفون: Kálmán M; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary., Oszwald E; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary., Pócsai K; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
المصدر: The Journal of comparative neurology [J Comp Neurol] 2023 Jun; Vol. 531 (8), pp. 866-887. Date of Electronic Publication: 2023 Mar 30.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0406041 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-9861 (Electronic) Linking ISSN: 00219967 NLM ISO Abbreviation: J Comp Neurol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003-> : Hoboken, N.J. : Wiley-Liss
Original Publication: Philadelphia Wistar Institute of Anatomy and Biology
مواضيع طبية MeSH: Area Postrema*/metabolism , Subfornical Organ*/blood supply , Subfornical Organ*/metabolism, Rats ; Humans ; Animals ; Nestin/metabolism ; Ependymoglial Cells/metabolism ; Aquaporin 4 ; Astrocytes/metabolism
مستخلص: The study demonstrates the astroglial and gliovascular structures of the area postrema (AP) in three planes, and compares them to our former findings on the subfornical organ (SFO) and the organon vasculosum laminae terminalis (OVLT). The results revealed long glial processes interconnecting the AP with deeper areas of brain stem. The laminin and β-dystroglycan immunolabeling altered along the vessels indicating alterations of the gliovascular relations. These and the distributions of glial markers displayed similarities to the SFO and OVLT. In every organ, there was a central area with vimentin- and nestin-immunopositive glia, whereas GFAP and the water-channel aquaporin 4 were found at the periphery. This separation supports different functions of the two regions. The presence of nestin may indicate stem cell capabilities, whereas aquaporin 4 has been suggested by other studies to be a possible participant of osmoperception. Numerous S100-immunopositive glial cells were found approximately evenly distributed in both parts of the AP. Frequency of glutamine synthetase-immunoreactive cells was similar in the surrounding brain tissue in contrast to that found in the OVLT and SFO. Our findings on the three sensory circumventricular organs (AP, OVLT, and SFO) are compared in parallel.
(© 2023 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.)
References: Adorjan, I., & Kálmán, M. (2009). Distribution of β-dystroglycan immunopositive globules in the subventricular zone of rat brain. Glia, 57, 657-666. https://doi.org/10.1002/glia.20794.
Aumailley, M., & Gayraud, B. (1998). Structure and biological activity of the extracellular matrix. Journal of Molecular Medicine, 76, 253-265. https://doi.org/10.1007/s001090050215.
Amiry-Moghaddam, M., Frydenlund, D. S., & Ottersen, O. P. (2004). Anchoring of aquaporin 4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience, 129, 999-1010. https://doi.org/10.1016/j.neuroscience.2004.08.049.
Bagyura, Zs., Pócsai, K., & Kálmán, M. (2010). Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: Differences from the brain tissue and between the subdivisions of the gland. Histology and Histopathology, 25, 1-14.
Barraco, R., El-Ridi, M., Ergene, E., Parizon, M., & Bradley, D. (1992). An atlas of the rat subpostremal nucleus tractus solitarius. Brain Research Bulletin, 29, 703-765. https://doi.org/10.1016/0361-9230(92)90143-L.
Bauer, S., Hay, M., Amilhon, B., Jean, A., & Moyse, E. (2005). In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem. Neuroscience, 130, 75-90. https://doi.org/10.1016/j.neuroscience.2004.08.047.
Benfenati, V., Caprini, M., Dovizio, M., Mylonakou, M. N., Ferroni, S., Ottersen, O. P., & Amiry-Moghaddam, M. (2011). An aquaporin4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 108, 2563-2568. https://doi.org/10.1073/pnas.1012867108.
Bennett, L., Yang, M., Enikolopov, G., & Iacovitti, L. (2009). Circumventricular organs: A novel site of neural stem cells in the adult brain. Molecular and Cellular Neuroscience, 41, 337-347. https://doi.org/10.1016/j.mcn.2009.04.007.
Berger, U. V., & Hediger, M. A. (2000). Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. Journal of Comparative Neurology, 421, 3853-3899.
Bianchi, R., Garbuglia, M., Verzini, M., Giambanco, I., Spreca, A., & Donato, R. (1995). S-100 protein and annexin II2-p11 (calpactin I) act in concert to regulate the state of assembly of GFAP intermediate filaments. Biochemichal Biophysical Research Communications, 208, 910-918. https://doi.org/10.1006/bbrc.1995.1421.
Bignami, A., Dahl, D., & Rueger, D. C. (1980). Glial fibrillary acidic protein (GFAP) in normal cells and in pathological conditions. Advances in Cellular Neurobiology, 1, 285-310. https://doi.org/10.1016/B978-0-12-008301-5.50012-1.
Bouchaud, C., Le Bert, M., & Dupouey, P. (1989). Are close contacts between astrocytes and endothelial cells a prerequisite condition of a blood-brain barrier? The rat subfornical organ as an example. Biology of Cell, 67, 159-165.
Bourque, C. W. (2008). Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews Neuroscience, 9, 519-531. https://doi.org/10.1038/nrn2400.
Brizzee, K. R., & Klara, P. M. (1984). The structure of the mammalian area postrema. Federation Proceedings, 43, 2944-2948.
Connor, J. R., & Berkowitz, R. M. (1985). A demonstration of glial filament distribution in astrocytes isolated from rat cerebral cortex. Neuroscience, 16, 33-44. https://doi.org/10.1016/0306-4522(85)90044-2.
Dahl, D., Rueger, D. C., Bignami, A., Weber, K., & Osborn, M. (1981). Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. European Journal of Cell Biology, 24, 191-196.
Dallaporta, M., Bonnet, M. S., Horner, K., Trouslard, J., Jean, A., & Troadec, J. D. (2010). Glial cells of the nucleus tractus solitarius as partners of the dorsal hindbrain regulation of energy balance: A proposal for a working hypothesis. Brain Research, 1350, 35-42. https://doi.org/10.1016/j.brainres.2010.04.025.
D'Amelio, F. E., Mehler, W. R., Gibbs, M. A., Eng, L. F., & Wu, J. Y. (1987). Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy. Brain Research, 410, 232-244. https://doi.org/10.1016/0006-8993(87)90320-9.
Dellmann, H. D. (1998). Structure of the subfornical organ: A review. Microscopical Research and Techniques, 41, 85-97. https://doi.org/10.1002/(SICI)1097-0029(19980415)41:2<85::AID-JEMT1>3.0.CO;2-P.
Dempsey, E. W. (1973). Neural and vascular ultrastructure of the area postrema in the rat. Journal of Comparative Neurology, 150, 177-199. https://doi.org/10.1002/cne.901500206.
Donato, R., Cannon, B. R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D. J., & Geczy, C. L. (2013). Functions of S100 proteins. Current Molecular Medicine, 13, 24-57. https://doi.org/10.2174/156652413804486214.
Dow, K. E., & Wang, W. (1998). Cell biology of astrocyte proteoglycans. Cellular and Molecular Life Science, 54, 567-581. https://doi.org/10.1007/s000180050185.
Eliasson, C., Sahlgren, C., Berthold, C. H., Stakeberg, J., Celis, J. E., Betsholtz, C., Eriksson, J. E., & Pekny, M. (1999). Intermediate filament protein partnership in astrocytes. Journal of Biological Chemistry, 274, 23996-24006. https://doi.org/10.1074/jbc.274.34.23996.
Franco, S. J., & Müller, U. (2011). Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Developmental Neurobiology, 71, 889-900. https://doi.org/10.1002/dneu.20946.
Furube, E., Morita, M., & Miyata, S. (2015). Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell & Tissue Research, 362, 347-365.
Galou, M., Gao, J., Humpert, J., Mericskay, M., Li, Z., Paulin, D., & Vicart, P. (1997). The importance of intermediate filaments in the adaptation of tissues to mechanical stress: Evidence from gene knockout studies. Biology of the Cell, 89, 85-97. https://doi.org/10.1111/j.1768-322X.1997.tb00997.x.
Gates, M. A., Thomas, L. B., Howard, E. M., Laywell, E. D., Sajin, B., Faissner, A., Götz, B., Silver, J., & Steindler, D. A. (1995). Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. Journal of Comparative Neurology, 361, 249-266. https://doi.org/10.1002/cne.903610205.
Goren, O., Adorján, I., & Kálmán, M. (2006). Heterogeneous occurrence of aquaporin-4 in the ependyma and in the circumventricular organs in rat and chicken. Anatomy and Embryology, 211, 155-172. https://doi.org/10.1007/s00429-005-0067-8.
Gross, P. M. (1991). Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Canadian Journal of Physiology and Pharmacology, 69, 1010-1025. https://doi.org/10.1139/y91-152.
Guadagno, E., & Moukhles, H. (2004). Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4.1, and the water permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia, 47, 138-149. https://doi.org/10.1002/glia.20039.
Haenggi, T., Soontornmalai, A., Schaub, M. C., & Fritsch, J. M. (2004). The role of utrophin and Dp71 for assembly of different dystrophin associated protein complexes (DPCs) in the choroid plexus and microvasculature of the brain. Neuroscience, 129, 403-413. https://doi.org/10.1016/j.neuroscience.2004.06.079.
Hasegawa, H., Ma, T., Skach, W., Matthay, M. A., & Verkman, A. S. (1994). Molecular cloning of a mercurial- insensitive water channel expressed in selected water-transporting tissues. Journal of Biological Chemistry, 269, 497-550. https://doi.org/10.1016/S0021-9258(17)37486-0.
Hicks, A.-I., Kobrinsky, S., Zhou, S., Yang, J., & Prager-Khoutorsky, M. (2021). Anatomical organization of the rat subfornical organ. Frontiers in Cellular Neuroscience, 15, 691711. https://doi.org/10.3389/fncel.2021.691711.
Hockfield, S., & McKay, R. D. G. (1985). Identification of major cell classes in the developing mammalian nervous system. Journal of Neuroscience, 12, 3310-3328. https://doi.org/10.1523/JNEUROSCI.05-12-03310.1985.
Holst, C. B., Brochner, C. B., Vitting-Seerup, K., & Mollgard, K. (2019). Astrogliogenesis in human fetal brain: Complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. Journal of Anatomy, 235, 590-615. https://doi.org/10.1111/joa.12948.
Hourai, A., & Miyata, S. (2013). Neurogenesis in the circumventricular organs of adult mouse brains. Journal of Neuroscience Research, 91, 757-770. https://doi.org/10.1002/jnr.23206.
Ikeshima-Kataoka, H. (2015). Neuroimmunological implications of AQP4 in astrocytes. International Journal of Molecular Sciences, 17, 1306. https://doi.org/10.3390/ijms17081306.
Janzer, R. C., & Raff, M. C. (1987). Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325, 253-257. https://doi.org/10.1038/325253a0.
Jeong, J. K., Dow, S. A., & Colin, N. (2021). Young sensory circumventricular organs, neuroendocrine control, and metabolic regulation. Metabolites, 11, 494. https://doi.org/10.3390/metabo11080494.
Jung, J. S., Bhat, R. V., Preston, G. M., Guggino, W. B., Baraban, J. M., & Agre, P. (1994). Molecular characterization of an aquaporin cDNA from brain: Candidate osmoreceptor and regulator of water balance. Proceedings of National Academy Sciences United States of the United States of America, 91, 13052-13056. https://doi.org/10.1073/pnas.91.26.13052.
Kálmán, M., Oszwald, E., & Pócsai, K. (2019). Three-plane description of astroglial populations of OVLT subdivisions in rat: Tanycyte connections to distant parts of third ventricle. Journal of Comparative Neurology, 527, 2793-2812. https://doi.org/10.1002/cne.24707.
Kaur, C., & Ling, E. A. (2017). The circumventricular organs. Histology & Histopathology, 32, 879-892.
Khurana, T. S., Watkins, S. C., & Kunkel, L. M. (1992). The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. Journal of Cell Biology, 119, 357-366. https://doi.org/10.1083/jcb.119.2.357.
Knuesel, I., Bornhauser, B. C., Zuellig, R. A., Heller, F., Schaub, M. C., & Fritschy, J.-M. (2000). Differential expression of utrophin and dystrophin in CNS neurons: An in situ hybridization and immunohistochemical study. The Journal of Comparative Neurology, 422, 594-611. https://doi.org/10.1002/1096-9861(20000710)422:4<594::AID-CNE8>3.0.CO;2-Q.
Krisch, B., Leonhardt, H., & Buchheim, W. (1978). The functional and structural border between the CSF- and blood-milieu in the circumventricular organs (organum vasculosum laminae terminalis, subfornical organ, area postrema) of the rat. Cell and Tissue Research, 195, 485-497. https://doi.org/10.1007/BF00233891.
Krum, J. M., More, N. S., & Rosenstein, J. M. (1991). Brain angiogenesis: Variations in vascular basement membrane glycoprotein immunoreactivity. Experimental Neurology, 111, 152-165. https://doi.org/10.1016/0014-4886(91)90002-T.
Langlet, F., Mullier, A., Bouret, S. G., Prevot, V., & Dehouck, B. (2013). Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. Journal of Comparative Neurology, 521, 3389-3405. https://doi.org/10.1002/cne.23355.
Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60, 585-595. https://doi.org/10.1016/0092-8674(90)90662-X.
Leonhardt, H. (1970). Subependymale Basalmembranlabyrinthe im Hinterhorn des Seitenventrikels des Kaninchengehirns. Zeitung der Zellforschung und Mikroskopische Anatomy, 105, 395-404.
Linser, P. J. (1985). Multiple marker analysis in the avian optic tectum reveals three classes of neuroglia and carbonic anhydrase-containing neurons. Journal of Neuroscience, 5, 2388-2396. https://doi.org/10.1523/JNEUROSCI.05-09-02388.1985.
Love, D. R, Hill, D. F., Dickson, G., Spurr, N. K, Byth, B. C., Marsden, R. F., Walsh, F. S., Edwards, Y. H., & Davies, K. E. (1989). An autosomal transcript in skeletal muscle with homology to dystrophin. Nature, 339, 55-58. https://doi.org/10.1038/339055a0.
Ludwin, S. K., Kosek, J. C., & Eng, L. F. (1976). The topographical distribution of S-100 and GFA proteins in the adult rat brain. An immunocytochemical study using horseradish peroxidase labeled antibodies. Journal of Comparative Neurology, 165, 197-208. https://doi.org/10.1002/cne.901650206.
MacDonald, A. J., Holmes, F. E., Beall, C., Pickering, A. E., & Ellacott, K. L. (2020). Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia, 68, 1241-1254. https://doi.org/10.1002/glia.23774.
Mannari, T., Morita, S., Furube, E., Tominaga, M., & Miyata, S. (2013). Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia, 61, 957-971. https://doi.org/10.1002/glia.22488.
Maolood, N., & Meister, B. (2009). Protein components of the blood-brain barrier (BBB) in the brainstem area postrema-nucleus tractus solitarius region. Journal of Chemical Neuroanatomy, 37, 182-195. https://doi.org/10.1016/j.jchemneu.2008.12.007.
Matsumura, K., Shasby, D. M, & Campbell, K. P. (1993). Purification of dystrophin-related protein (utrophin) from lung and its identification in pulmonary artery endothelial cells. FEBS Letters, 326, 289-293. https://doi.org/10.1016/0014-5793(93)81810-M.
Martinez-Hernandez, A., Bell, K. P., & Norenberg, M. D. (1977). Glutamine synthetase: Glial localization in brain. Science, 195, 1356-1358. https://doi.org/10.1126/science.14400.
Marvin, M. J., Dahlstrand, J., Lendahl, U., & McKay, R. D. (1998). A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. Journal of Cell Science, 111, 1951-1961. https://doi.org/10.1242/jcs.111.14.1951.
McKinley, M. J., Denton, D. A., Ryan, P. J., Yao, S. T., Stefanidis, A., & Oldfield, B. J. (2019). From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. Journal of Neuroendocrinology, 31, e12689. https://doi.org/10.1111/jne.12689.
McKinley, M. J., McAllen, R. M., Davern, P., Giles, M. E., Penschow, J., Swunn, N., Uschakov, A., & Oldfield, B. J. (2003). The sensory circumventricular organs of the mammalian brain. Advances in Anatomy Embryology and Cell Biology, 172, 1-127. https://doi.org/10.1007/978-3-642-55532-9&#95;1.
Menet, V., Giménez, Y., Ribotta, M., Chauvet, N., Drian, M. J., Lannoy, J., Colucci-Guyon, E., & Privat, A. (2001). Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. Journal of Neuroscience, 21, 6147-6158. https://doi.org/10.1523/JNEUROSCI.21-16-06147.2001.
Michalczyk, K., & Ziman, M. (2005). Nestin structure and predicted function in cellular cytoskeletal organization. Histology and Histopathology, 20, 665-671.
Miller, R. L., & Loewy, A. D. (2013). ENaC gamma-expressing astrocytes in the circumventricular organs, white matter, and ventral medullary surface: Sites for Na+ regulation by glial cells. Journal of Chemical Neuroanatomy, 53, 72-80. https://doi.org/10.1016/j.jchemneu.2013.10.002.
Miyata, S. (2015). New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers of Neuroscience, 9, 390. https://doi.org/10.3389/fnins.2015.00390.
Morita, S., Furube, E., Mannari, T., Okuda, H., Tatsumi, K., Wanaka, A., & Miyata, S. (2015). Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain. Cell & Tissue Research, 349, 589-560.
Morita, S., Furube, E., Mannari, T., Okuda, H., Tatsumi, K., Wanaki, A., & Miyata, S. (2016). Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell and Tissue Research, 363, 497-511. https://doi.org/10.1007/s00441-015-2207-7.
Nehmé, B., Henry, M., Mouginot, D., & Drolet, G. (2012). The expression pattern of the Na(+) sensor, Na(x) in the hydromineral homeostatic network: A comparative study between the rat and mouse. Frontiers in Neuroanatomy, 6, 26. https://doi.org/10.3389/fnana.2012.00026.
Nagelhus, E. A., & Ottersen, O. P. (2013). Physiological roles of aquaporin-4 in brain. Physiological Review, 93, 1543-1562. https://doi.org/10.1152/physrev.00011.2013.
Noda, M., & Sakuta, H. (2013). Central regulation of body-fluid homeostasis. Trends in Neuroscience, 36, 661-673. https://doi.org/10.1016/j.tins.2013.08.004.
Okamoto, A., Fujii, R., Yoshimura, R., & Miyata, S. (2022). Transcytosis of tanycytes in the circumventricular organs of adult mouse brain. Neuroscience Letters, 779, 136633. https://doi.org/10.1016/j.neulet.2022.136633.
Pecchi, E., Dallaporta, M., Charrier, C., Pio, J., Jean, A., Moyse, E., & Troadec, J. D. (2007). Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. Journal of Comparative Neurology, 501, 353-368. https://doi.org/10.1002/cne.21259.
Pekny, M. (2001). Astrocytic intermediate filaments: Lessons from GFAP and vimentin knock-out mice. Progress in Brain Research, 132, 23-30. https://doi.org/10.1016/S0079-6123(01)32062-9.
Pekny, M., & Pekna, M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. Journal of Pathology, 204, 428-437. https://doi.org/10.1002/path.1645.
Peronnet, C., & Vaillend, C. (2010). Dystrophins, utrophins and associated scaffolding complexes: Role in mammalian brain and implications for therapeutic strategies. Journal of Biomedical Biotechnology, 2010, 849426.
Pixley, S. K., & de Vellis, J. (1984). Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Research, 317, 201-209. https://doi.org/10.1016/0165-3806(84)90097-X.
Pixley, S. K., Kobayashi, Y., & de Vellis, J. (1984). A monoclonal antibody against vimentin: Characterization. Brain Research, 317, 185-199. https://doi.org/10.1016/0165-3806(84)90096-8.
Pócsai, K., Bagyura, Z. S., & Kálmán, M. (2010). Components of the basal lamina and the dystrophin-dystroglycan complex in the neurointermediate lobe of rat pituitary - Different localizations of β-dystroglycan, dystrobrevins, α1-syntrophin and aquaporin-4. Journal of Histochemistry and Cytochemistry, 58, 463-479. https://doi.org/10.1369/jhc.2010.954768.
Pócsai, K., & Kálmán, M. (2014a). Extracellular matrix components mark the territories of circumventricular organs. Neuroscience Letters, 566, 36-41. https://doi.org/10.1016/j.neulet.2014.02.016.
Pócsai, K., & Kálmán, M. (2014b). Immunohistochemical detectability of cerebrovascular utrophin depends on the condition of basal lamina. Neuroscience Letters, 583, 182-187. https://doi.org/10.1016/j.neulet.2014.09.044.
Pócsai, K., & Kálmán, M. (2015). Glial and perivascular structures in the subfornical organ: Distinguishing the shell and core. Journal of Histochemistry and Cytochemistry, 63, 367-383. https://doi.org/10.1369/0022155415575027.
Prager-Khoutorsky, M., & Bourque, C. W. (2015). The anatomical organization of the rat organum vasculosum laminae terminalis. American Journal of Physiology, 309, 324-337.
Prevot, V., Dehouck, B., Poulain, P., Beauvillain, J. C., Buée-Scherrer, V., & Bouret, S. T. (2007). Neuronal-glial-endothelial interactions and cell plasticity in the postnatal hypothalamus: Implications for the neuroendocrine control of reproduction. Psychoneuroendocrinology, 32(1), S46-S51. https://doi.org/10.1016/j.psyneuen.2007.03.018.
Price, C. J., Hoyda, T. D., & Ferguson, A. V. (2008). The area postrema: A brain monitor and integrator of systemic autonomic state. Neuroscientist, 4, 182-194. https://doi.org/10.1177/1073858407311100.
Rajkowska, G., & Miguel-Hidalgo, J. J. (2019). Glial pathology in major depressive disorder: An approach to investigate the coverage of blood vessels by astrocyte endfeet in human postmortem brain. Methods in Molecular Biology, 1938, 247-254. https://doi.org/10.1007/978-1-4939-9068-9&#95;17.
Ramirez-Sanchez, I., Mendoza-Lorenzo, P., , Zentelal-Dehesa, A., Mendez-Bolajna, E., Lara-Padilla, E., Ceballos-Reyes, G., Canto, P., Palma-Flores, C., & Coral-Vazquez, R. M. (2012). Caveolae and non-caveolae lipid raft microdomains of human umbilical vein endothelial cells contain utrophin-associated protein complexes. Biochimie, 94, 1884-1890. https://doi.org/10.1016/j.biochi.2012.05.001.
Rodriguez, E., Guerra, M., Peruzzo, B., & Blazquez, J. L. (2019). Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. Journal of Neuroendocrinology, 31, e12690. https://doi.org/10.1111/jne.12690.
Roth, G. I., & Yamamoto, W. S. (1968). The microcirculation of the area postrema in the rat. Journal of Comparative Neurology, 133, 329-340. https://doi.org/10.1002/cne.901330304.
Sanin, V., Heeß, C., Kretzschmar, H. A., & Schüller, U. (2013). Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia. Neuropathology and Applied Neurobiology, 39, 510-518. https://doi.org/10.1111/j.1365-2990.2012.01301.x.
Shigematsu, K., Kamo, H., Akiguchi, J., Kimura, J., Kameyama, M., & Kimura, H. (1989). Neovascularization in kainic acid-induced lesions of rat striatum. An immunocytochemical study with laminin. Brain Research, 501, 215-222. https://doi.org/10.1016/0006-8993(89)90639-2.
Sisó, J. M., Jeffrey, M., & González, L. (2010). Sensory circumventricular organs in health and disease. Acta Neuropathology, 12, 689-705. https://doi.org/10.1007/s00401-010-0743-5.
Sixt, M., Engelhardt, B., Pausch, F., Hallmann, R., Wendler, O., & Sorokin, L. M. (2001). Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. Journal of Cell Biology, 153, 933-946. https://doi.org/10.1083/jcb.153.5.933.
Smith, P. M., & Ferguson, A. V. (2010). Circulating signals as critical regulators of autonomic state-central roles for the subfornical organ. American Journal of Physiology - Regulatory Integrative Comparative Physiology, 299, 405-415. https://doi.org/10.1152/ajpregu.00103.2010.
Syková, E., Vorísek, I., Mazel, T., Antonova, T., & Schachner, M. (2005). Reduced extracellular space in the brain of tenascin-R and HNK-1-sulphotransferase deficient mice. European Journal of Neuroscience, 22, 1873-1880. https://doi.org/10.1111/j.1460-9568.2005.04375.x.
Szabó, A., & Kálmán, M. (2004). Disappearance of the post-lesional laminin immunopositivity of brain vessels is parallel with the formation of gliovascular junctions and common basal lamina. A double-labelling immunohistochemical study. Neuropathology and Applied Neurobiology, 30, 169-177. https://doi.org/10.1046/j.0305-1846.2003.00524.x.
Szabó, A., & Kálmán, M. (2008). Post traumatic lesion absence of beta-dystroglycan-immunopositivity in brain vessels coincides with the glial reaction and the immunoreactivity of vascular laminin. Current Neurovasccular Research, 5, 206-213. https://doi.org/10.2174/156720208785425657.
Tham, D. K. L., Joshi, B., & Moukhles, H. (2016). Aquaporin-4 cell-surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes. PLoS ONE, 11, e0165439. https://doi.org/10.1371/journal.pone.0165439.
Tian, M., Jacobson, C., Gee, S. H., Campbell, K. P., Carbonetto, S., & Jucker, M. (1996). Dystroglycan in the cerebellum is a laminin a2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. European Journal of Neuroscience, 8, 2739-2747. https://doi.org/10.1111/j.1460-9568.1996.tb01568.x.
Troadec, J. D., Gaige, S., Barbot, M., Lebrun, B., Barbouche, R., & Abysique, A. (2022). Modulation of energy balance: The dorsal vagal complex is no exception. International Journal of Molecular Sciences, 23, 960. https://doi.org/10.3390/ijms23020960.
Venero, J. L., Vizuete, M. L., Machado, A., & Cano, J. (2001). Aquaporins in the central nervous system. Progress in Neurobiology, 63, 321-336. https://doi.org/10.1016/S0301-0082(00)00035-6.
Wang, Q. P., Guan, J. L., Pan, W., Kastin, A. J., & Shioda, S. (2008). A diffusion barrier between the area postrema and nucleus tractus solitarius. Neurochemical Research, 33, 2035-2043. https://doi.org/10.1007/s11064-008-9676-y.
Wang, S. C., Parpura, V., & Wang, Y.-F. (2021). Astroglial regulation of magnocellular neuroendocrine cell activities in the supraoptic nucleus. Neurochemical Research, 46, 2586-2600. https://doi.org/10.1007/s11064-020-03172-2.
Wei, L.-C., Shi, M., Chen, L.-W., Cao, R., Zhang, P., & Chan, Y. S. (2002). Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Developmental Brain Research, 139, 9-17. https://doi.org/10.1016/S0165-3806(02)00509-6.
Weindl, A. (1973). Neuroendocrine aspects of circumventricular organs. In W. F. Ganong & L. Martini (Eds.), Frontiers in neuroendocrinology (pp. 3-32). Oxford University Press.
Wells, T. (1998). Vesicular osmometers, vasopression secretion and aquaporin-4: A new mechanism for osmoreception? Molecular and Cellular Endocrinology, 136, 103-107. https://doi.org/10.1016/S0303-7207(97)00219-0.
Willis, C. L., Garwood, C. J., & Ray, D. E. (2007). A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience, 150, 498-509. https://doi.org/10.1016/j.neuroscience.2007.09.023.
Wolburg, H., Noell, S., Mack, A., Wolburg-Buchholz, K., & Fallier-Becker, P. (2009). Brain endothelial cells and the glio-vascular complex. Cell and Tissue Research, 33, 75-96. https://doi.org/10.1007/s00441-008-0658-9.
Yoneda, K., Yamamoto, N., Asai, K., Sobue, K., Fujita, Y., Fujita, M., Mase, M., Yamada, K., Nakanishi, M., Tada, T., Miura, Y., & Kato, T. (2001). Regulation of aquaporin-4 expression in astrocytes. Brain Research Molecular Brain Research, 89, 94-102. https://doi.org/10.1016/S0169-328X(01)00067-5.
Zaccaria, M. L., Di Tommaso, F., Brancaccio, A., Paggi, P., & Petrucci, T. C. (2001). Dystroglycan distribution in adult mouse brain: A light and electron microscopic study. Neuroscience, 104, 311-324. https://doi.org/10.1016/S0306-4522(01)00092-6.
Zamecnik, J., Homola, A., Cicanic, M., Kuncova, K., Marusic, P., Krsek, P., Sykova, E., & Vargova, L. (2012). The extracellular matrix and diffusion barriers in focal cortical dysplasias. European Journal of Neuroscience, 36, 2017-2024. https://doi.org/10.1111/j.1460-9568.2012.08107.x.
Zhou, R., Wu, X., & Skalli, O. (2001). TGF-alpha induces a stationary, radial-glia like phenotype in cultured astrocytes. Brain Research Bulletin, 56, 37-42. https://doi.org/10.1016/S0361-9230(01)00591-3.
Ziegler, D. R., Innocente, C. E., Leal, R. B., Rodnight, R., & Goncalves, C. A. (1998). The S100B protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochemical Research, 23, 1259-1263. https://doi.org/10.1023/A:1020740115790.
فهرسة مساهمة: Keywords: AB_10013382; AB_10711040; AB_141708; AB_142924; AB_2313606; AB_2336818; AB_2536180; AB_258270; AB_350537; AB_397880; AB_442043; AB_477163; AB_477501; AB_563739; AB_94843; AB_94911; GFAP; SCR_014199; aquaporin 4; laminin; nestin; vimentin; β-dystroglycan
المشرفين على المادة: 0 (Nestin)
0 (Aquaporin 4)
تواريخ الأحداث: Date Created: 20230330 Date Completed: 20230411 Latest Revision: 20230528
رمز التحديث: 20231215
DOI: 10.1002/cne.25470
PMID: 36994627
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9861
DOI:10.1002/cne.25470