دورية أكاديمية

Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics.

التفاصيل البيبلوغرافية
العنوان: Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics.
المؤلفون: Beunk L; Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands., Nijenhuis M; Royal Dutch Pharmacists Association (KNMP), The Hague, the Netherlands. M.Nijenhuis@knmp.nl., Soree B; Royal Dutch Pharmacists Association (KNMP), The Hague, the Netherlands., de Boer-Veger NJ; Pharmacy Boterdiep, Groningen, the Netherlands., Buunk AM; Pharmacy De Katwijkse Apotheek, Katwijk, the Netherlands., Guchelaar HJ; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands., Houwink EJF; Department of Public Health and Primary Care (PHEG), Leiden University Medical Center, Leiden, the Netherlands.; National eHealth Living Lab (NELL), Leiden, the Netherlands., Risselada A; Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, the Netherlands., Rongen GAPJM; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands., van Schaik RHN; Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands., Swen JJ; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands., Touw D; Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.; Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands., van Westrhenen R; Department of Psychiatry, Parnassia Group, Amsterdam, the Netherlands.; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.; Institute of Psychiatry, Psychology&Neuroscience (IoPPN), King's College London, London, UK., Deneer VHM; Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands., van der Weide J; Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands.
المصدر: European journal of human genetics : EJHG [Eur J Hum Genet] 2024 Mar; Vol. 32 (3), pp. 278-285. Date of Electronic Publication: 2023 Mar 31.
نوع المنشور: Systematic Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9302235 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5438 (Electronic) Linking ISSN: 10184813 NLM ISO Abbreviation: Eur J Hum Genet Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003->: London : Nature Publishing Group
Original Publication: Basel ; New York : Karger, [1992-
مواضيع طبية MeSH: Antipsychotic Agents*/pharmacokinetics , Antipsychotic Agents*/pharmacology , Clozapine* , Quinolones* , Thiophenes*, Humans ; Aripiprazole ; Clopenthixol ; Cytochrome P-450 CYP1A2 ; Cytochrome P-450 CYP2D6/genetics ; Cytochrome P-450 CYP3A/genetics ; Drug Interactions ; Haloperidol ; Olanzapine ; Pharmacogenetics ; Pimozide ; Quetiapine Fumarate/pharmacokinetics ; Quetiapine Fumarate/pharmacology ; Risperidone/pharmacokinetics ; Risperidone/pharmacology
مستخلص: The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only.
(© 2023. The Author(s), under exclusive licence to European Society of Human Genetics.)
References: Swen JJ, Huizinga TW, Gelderblom H, de Vries EGE, Assendelft WJJ, Kirchheiner J, et al. Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med. 2007;4:e209. (PMID: 10.1371/journal.pmed.0040209176966401945038)
van Westrhenen R, Aitchison KJ, Ingelman-Sundberg M, Jukić MM. Pharmacogenomics of antidepressant and antipsychotic treatment: How far have we got and where are we going? Front Psychiatry. 2020;11:94. (PMID: 10.3389/fpsyt.2020.00094322263967080976)
van Westrhenen R, Ingelman-Sundberg M. Editorial: from trial and error to individualised pharmacogenomics-based pharmacotherapy in psychiatry. Front Pharmacol. 2021;12:725565. (PMID: 10.3389/fphar.2021.725565346301018493803)
Swen JJ, Wilting I, de Goede AL, Grandia L, Mulder H, Touw DJ, et al. Pharmacogenetics: from bench to byte. Clin Pharm Ther. 2008;83:781–7. (PMID: 10.1038/sj.clpt.6100507)
Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte - an update of guidelines. Clin Pharm Ther. 2011;89:662–73. (PMID: 10.1038/clpt.2011.34)
Marcath LA, Pasternak AL, Hertz DL. Challenges to assess substrate-dependent allelic effects in CYP450 enzymes and the potential clinical implications. Pharmacogenomics J. 2019;19:501–15. (PMID: 10.1038/s41397-019-0105-131616046)
Guchelaar H-J. Pharmacogenomics, a novel section in the European Journal of Human Genetics. Eur J Hum Genet. 2018;26:1399–400. (PMID: 10.1038/s41431-018-0205-4299673356138632)
Matic M, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk A-M, Houwink EJF, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone). Eur J Hum Genet. 2021;30:1105–13.
Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: Consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020;13:116–24. (PMID: 10.1111/cts.1269231647186)
CYP3A4 cytochrome P450 family 3 subfamily A member 4 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information. [cited 2021 Nov 9]. Available from: https://www.ncbi.nlm.nih.gov/gene/1576 .
CYP3A4 cytochrome P450 family 3 subfamily A member 4 [Internet]. Genome Aggregation Database. [cited 2021 Nov 9]. Available from: https://gnomad.broadinstitute.org/gene/ENSG00000160868?dataset=gnomad&#95;r2&#95;1 .
CYP3A4 [Internet]. Pharmacogene Variation Consortium. [cited 2021 Nov 9]. Available from: https://www.pharmvar.org/gene/CYP3A4 .
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–86. (PMID: 10.1038/tpj.2010.2820386561)
Annotation of RNPGx Guideline for tacrolimus and CYP3A4, CYP3A5 [Internet]. PharmGKB. [cited 2022 Dec 14]. Available from: https://www.pharmgkb.org/chemical/PA451578/guidelineAnnotation/PA166202481 .
Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet. 2004;75:1059–69. (PMID: 10.1086/426406154929261182141)
Elens L, Bouamar R, Hesselink DA, Haufroid V, van Gelder T, van Schaik RHN. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics. 2012;22:373–80. (PMID: 10.1097/FPC.0b013e328351f3c122388796)
Elens L, Becker ML, Haufroid V, Hofman A, Visser LE, Uitterlinden AG, et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet Genomics. 2011;21:861–6. (PMID: 10.1097/FPC.0b013e32834c6edb21946898)
van der Weide K, van der Weide J. The influence of the CYP3A4*22 polymorphism on serum concentration of quetiapine in psychiatric patients. J Clin Psychopharmacol. 2014;34:256–60. (PMID: 10.1097/JCP.000000000000007024525658)
Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011;57:1574–83. (PMID: 10.1373/clinchem.2011.16561321903774)
Apellániz-Ruiz M, Lee M-Y, Sánchez-Barroso L, Gutiérrez-Gutiérrez G, Calvo I, García-Estévez L, et al. Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin cancer Res. 2015;21:322–8. (PMID: 10.1158/1078-0432.CCR-14-175825398452)
Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics. 2002;12:121–32. (PMID: 10.1097/00008571-200203000-0000611875366)
Nakajima Y, Yoshitani T, Fukushima-Uesaka H, Saito Y, Kaniwa N, Kurose K, et al. Impact of the haplotype CYP3A4*16B harboring the Thr185Ser substitution on paclitaxel metabolism in Japanese patients with cancer. Clin Pharm Ther. 2006;80:179–91. (PMID: 10.1016/j.clpt.2006.04.012)
Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharm Ther. 2017;102:688–700. (PMID: 10.1002/cpt.690)
CYP1A2 cytochrome P450 family 1 subfamily A member 2 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information. [cited 2021 Nov 9]. Available from: https://www.ncbi.nlm.nih.gov/gene/1544 .
CYP1A2 cytochrome P450 family 1 subfamily A member 2 [Internet]. Genome Aggregation Database. [cited 2021 Nov 9]. Available from: https://gnomad.broadinstitute.org/gene/ENSG00000140505?dataset=gnomad&#95;r2&#95;1 .
CYP1A2 allele nomenclature [Internet]. Pharmacogene Variation Consortium. [cited 2021 Nov 9]. Available from: https://www.pharmvar.org/gene/CYP1A2 .
Nordmark A, Lundgren S, Ask B, Granath F, Rane A. The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women. Br J Clin Pharm. 2002;54:504–10. (PMID: 10.1046/j.1365-2125.2002.01673.x)
Aklillu E, Carrillo JA, Makonnen E, Hellman K, Pitarque M, Bertilsson L, et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharm. 2003;64:659–69. (PMID: 10.1124/mol.64.3.659)
Takata K, Saruwatari J, Nakada N, Nakagawa M, Fukuda K, Tanaka F, et al. Phenotype-genotype analysis of CYP1A2 in Japanese patients receiving oral theophylline therapy. Eur J Clin Pharm. 2006;62:23–8. (PMID: 10.1007/s00228-005-0057-z)
McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8:371–82. (PMID: 10.1517/17425255.2012.65762622288606)
Soyama A, Saito Y, Hanioka N, Maekawa K, Komamura K, Kamakura S, et al. Single nucleotide polymorphisms and haplotypes of CYP1A2 in a Japanese population. Drug Metab Pharmacokinet. 2005;20:24–33. (PMID: 10.2133/dmpk.20.2415770072)
Kootstra-Ros JE, Smallegoor W, van der Weide J. The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem. 2005;42:216–9. (PMID: 10.1258/000456305385779815949157)
Looman NMG, Matic M, Mulder H, Van Hulst R, Van Schaik RHN, Bruggeman R. Associatie van genetische variatie in CYP1A2 en UCT1A4 met metabole stoornissen bij gebruikers van clozapine en olanzapine [Association of genetic variation in CYP1A2 and UGT1A4 with metabolic disorders in users of clozapine and olanzapine]. Pharm Weekbl. 2013;7:163–6.
Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharm Ther. 2021;110:563–72. (PMID: 10.1002/cpt.2350)
Pirmohamed M, Hughes DA. Pharmacogenetic tests: the need for a level playing field. Nat Rev Drug Disco. 2013;12:3–4. (PMID: 10.1038/nrd3921)
Swen JJ, Nijenhuis M, van Rhenen M, de Boer-Veger NJ, Buunk A-M, Houwink EJF, et al. Pharmacogenetic information in clinical guidelines: The European perspective. Clin Pharm Ther. 2018;103:795–801. (PMID: 10.1002/cpt.1049)
Prioritization of CPIC guidelines [Internet]. Clinical Pharmacogenetics Implementation Consortium. [cited 2021 Nov 9]. Available from: https://cpicpgx.org/prioritization-of-cpic-guidelines/ .
U.S. Food and Drug Association (FDA). Table of pharmacogenetic associations [Internet]. [cited 2022 Mar 1]. Available from: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations .
معلومات مُعتمدة: 668353 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
المشرفين على المادة: 0 (Antipsychotic Agents)
82VFR53I78 (Aripiprazole)
2J3YBM1K8C (brexpiprazole)
982-24-1 (Clopenthixol)
J60AR2IKIC (Clozapine)
EC 1.14.14.1 (CYP1A2 protein, human)
EC 1.14.14.55 (CYP3A4 protein, human)
EC 1.14.14.1 (Cytochrome P-450 CYP1A2)
EC 1.14.14.1 (Cytochrome P-450 CYP2D6)
EC 1.14.14.1 (Cytochrome P-450 CYP3A)
J6292F8L3D (Haloperidol)
N7U69T4SZR (Olanzapine)
1HIZ4DL86F (Pimozide)
2S3PL1B6UJ (Quetiapine Fumarate)
0 (Quinolones)
L6UH7ZF8HC (Risperidone)
0 (Thiophenes)
تواريخ الأحداث: Date Created: 20230331 Date Completed: 20240311 Latest Revision: 20240313
رمز التحديث: 20240313
مُعرف محوري في PubMed: PMC10923774
DOI: 10.1038/s41431-023-01347-3
PMID: 37002327
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5438
DOI:10.1038/s41431-023-01347-3