دورية أكاديمية

FGF4 and FGF9 have synergistic effects on odontoblast differentiation.

التفاصيل البيبلوغرافية
العنوان: FGF4 and FGF9 have synergistic effects on odontoblast differentiation.
المؤلفون: Hoshino T; Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan., Onodera S; Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan., Kimura M; Department of Pediatric Dentistry, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan., Suematsu M; Department of Dental Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan., Ichinohe T; Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan., Azuma T; Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan. tazuma@tdc.ac.jp.
المصدر: Medical molecular morphology [Med Mol Morphol] 2023 Sep; Vol. 56 (3), pp. 159-176. Date of Electronic Publication: 2023 Apr 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Japan NLM ID: 101239023 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1860-1499 (Electronic) Linking ISSN: 18601499 NLM ISO Abbreviation: Med Mol Morphol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo, Japan : Springer, [2005]-
مواضيع طبية MeSH: Core Binding Factor Alpha 1 Subunit*/genetics , Fibroblast Growth Factor 4*/genetics , Fibroblast Growth Factor 4*/metabolism , Odontoblasts*/metabolism , Fibroblast Growth Factor 9*/genetics , Fibroblast Growth Factor 9*/metabolism, Animals ; Mice ; Cell Differentiation ; Mice, Transgenic
مستخلص: The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.
(© 2023. The Author(s) under exclusive licence to The Japanese Society for Clinical Molecular Morphology.)
References: Ruch JV, Lesot H, Be`que-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68. (PMID: 7626422)
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316. (PMID: 10.1038/sj.cr.729029915916718)
Li J, Parada C, Chai Y (2017) Cellular and molecular mechanisms of tooth root development. Development 144:374–384. (PMID: 10.1242/dev.137216281438445341797)
Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29. (PMID: 10.1016/S0925-4773(99)00322-610704885)
Oshima M, Tsuji T (2014) Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102:123–136. (PMID: 10.1007/s10266-014-0168-z25052182)
Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268. (PMID: 10.1002/(SICI)1097-0177(199803)211:3<256::AID-AJA7>3.0.CO;2-G9520113)
Tompkins K (2006) Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 47:111–118. (PMID: 10.1080/0300820060072775616753804)
Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27. (PMID: 10.1002/dvdy.2138818058912)
Kettunen P, Laurikkala J, Itaranta P, Vainio S, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332. (PMID: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J11066089)
Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H (2004) Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem 52:103–112. (PMID: 10.1177/00221554040520011014688221)
Li CY, Prochazka J, Goodwin AF, Klein OD (2014) Fibroblast growth factor signaling in mammalian tooth development. Odontology 102:1–13. (PMID: 10.1007/s10266-013-0142-124343791)
Du W, Du W, Yu H (2018) The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int 11:7549160.
Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet 22:374–385. (PMID: 10.1002/(SICI)1520-6408(1998)22:4<374::AID-DVG7>3.0.CO;2-39664689)
Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18. (PMID: 10.1177/0895937401015001040112640732)
Thesleff I (2003) Epithelial-mesenchymal signaling regulating tooth morphogenesis. J Cell Sci 116:1647–1648. (PMID: 10.1242/jcs.0041012665545)
Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190. (PMID: 10.1016/j.devcel.2006.05.014168901582847684)
Kimura M, Saito A, Onodera S, Nakamura T, Suematsu M, Shintani S, Azuma T (2022) The concurrent stimulation by Wnt and FGF8 signaling induces differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 55(1):8–19. (PMID: 10.1007/s00795-021-00297-334739612)
Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768. (PMID: 10.1242/dev.114.3.7551618140)
MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842. (PMID: 10.1074/jbc.272.2.8358995371)
Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279(18):19141–19148. (PMID: 10.1074/jbc.M40049020014966118)
Ye L, Mishina Y, Chen D, Huang H, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A, Bonewald LF, Feng JQ (2005) Dmp1 deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203. (PMID: 10.1074/jbc.M41291120015590631)
Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281:19064–19071. (PMID: 10.1074/jbc.M60071420016679514)
Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86:1134–1141. (PMID: 10.1177/15440591070860120218037646)
Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP Is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310. (PMID: 10.1177/002203451561076826503913)
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y (2013) FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 140(21):4375–4385. (PMID: 10.1242/dev.097733240673534007714)
Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5:500–507. (PMID: 10.1016/S0960-9822(95)00102-37583099)
Kelleher FC, O’Sullivan H, Smyth E, McDremott R, Viterbo A (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34:2198–2205. (PMID: 10.1093/carcin/bgt25423880303)
Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508. (PMID: 10.1038/nrg138015211352)
Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727. (PMID: 10.1074/jbc.M50292920015980071)
Camilleri S, McDonald F (2006) Review Runx2 and dental development. Eur J Oral Sci 114:361–373. (PMID: 10.1111/j.1600-0722.2006.00399.x17026500)
Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146. (PMID: 10.1679/aohc.71.13118974605)
Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266. (PMID: 10.1002/wdev.176257723094393358)
Guagnano V, Kauffmann A, Wohrle S (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2(12):1118–1133. (PMID: 10.1158/2159-8290.CD-12-021023002168)
Yang G, Jiang J, Lu W (2015) Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci 16(10):24011–24031. (PMID: 10.3390/ijms161024011264738374632735)
Braga R (2019) Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 35:3–14. (PMID: 10.1016/j.dental.2018.08.28830139530)
Mullane EM, Dong Z, Sedgley CM, Hu JCC, Botero TM, Holland GR, Nor JE (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87:1144–1148. (PMID: 10.1177/15440591080870120419029083)
Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E (2022) iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 14:290–301. (PMID: 10.1016/j.bioactmat.2021.11.01435310357)
معلومات مُعتمدة: 18H03007 Japan Society for the Promotion of Science; 21H03146 Japan Society for the Promotion of Science; 19K19074 Japan Society for the Promotion of Science; Suematsu Gas Biology Exploratory Research for Advanced Technology
فهرسة مساهمة: Keywords: Dmp1; Enamel knot; FGF4; FGF9; Mesenchymal cells; Odontoblast
المشرفين على المادة: 0 (Core Binding Factor Alpha 1 Subunit)
0 (Fibroblast Growth Factor 4)
0 (Fgf4 protein, mouse)
0 (Fgf9 protein, mouse)
0 (Fibroblast Growth Factor 9)
تواريخ الأحداث: Date Created: 20230403 Date Completed: 20231101 Latest Revision: 20231127
رمز التحديث: 20240628
DOI: 10.1007/s00795-023-00351-2
PMID: 37012505
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-1499
DOI:10.1007/s00795-023-00351-2