دورية أكاديمية

A viral biomolecular condensate coordinates assembly of progeny particles.

التفاصيل البيبلوغرافية
العنوان: A viral biomolecular condensate coordinates assembly of progeny particles.
المؤلفون: Charman M; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. charmanm@chop.edu.; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. charmanm@chop.edu.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. charmanm@chop.edu., Grams N; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA., Kumar N; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA., Halko E; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA., Dybas JM; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA., Abbott A; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA., Lum KK; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA., Blumenthal D; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.; Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA., Tsopurashvili E; Department of Molecular Biology, Princeton University, Princeton, NJ, USA., Weitzman MD; Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. weitzmanm@chop.edu.; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. weitzmanm@chop.edu.; Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. weitzmanm@chop.edu.; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. weitzmanm@chop.edu.
المصدر: Nature [Nature] 2023 Apr; Vol. 616 (7956), pp. 332-338. Date of Electronic Publication: 2023 Apr 05.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Biomolecular Condensates*/chemistry , Biomolecular Condensates*/metabolism , Viral Proteins*/chemistry , Viral Proteins*/metabolism , Adenoviruses, Human*/chemistry , Adenoviruses, Human*/growth & development , Adenoviruses, Human*/metabolism, Humans ; Capsid/chemistry ; Capsid/metabolism ; Capsid Proteins/chemistry ; Capsid Proteins/metabolism ; Intrinsically Disordered Proteins/chemistry ; Intrinsically Disordered Proteins/metabolism
مستخلص: Biomolecular condensates formed by phase separation can compartmentalize and regulate cellular processes 1,2 . Emerging evidence has suggested that membraneless subcellular compartments in virus-infected cells form by phase separation 3-8 . Although linked to several viral processes 3-5,9,10 , evidence that phase separation contributes functionally to the assembly of progeny particles in infected cells is lacking. Here we show that phase separation of the human adenovirus 52-kDa protein has a critical role in the coordinated assembly of infectious progeny particles. We demonstrate that the 52-kDa protein is essential for the organization of viral structural proteins into biomolecular condensates. This organization regulates viral assembly such that capsid assembly is coordinated with the provision of viral genomes needed to produce complete packaged particles. We show that this function is governed by the molecular grammar of an intrinsically disordered region of the 52-kDa protein, and that failure to form condensates or to recruit viral factors that are critical for assembly results in failed packaging and assembly of only non-infectious particles. Our findings identify essential requirements for coordinated assembly of progeny particles and demonstrate that phase separation of a viral protein is critical for production of infectious progeny during adenovirus infection.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Erratum in: Nature. 2023 Jul;619(7969):E38. (PMID: 37353705)
References: Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014). (PMID: 2528811210.1146/annurev-cellbio-100913-013325)
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017). (PMID: 2893577610.1126/science.aaf4382)
Etibor, T. A., Yamauchi, Y. & Amorim, M. J. Liquid biomolecular condensates and viral lifecycles: review and perspectives. Viruses 13, 366 (2021). (PMID: 33669141799656810.3390/v13030366)
Su, J. M., Wilson, M. Z., Samuel, C. E. & Ma, D. Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. Viruses 13, 126 (2021). (PMID: 33477448783587310.3390/v13010126)
Sengupta, P. & Lippincott-Schwartz, J. Revisiting membrane microdomains and phase separation: a viral perspective. Viruses 12, 745 (2020). (PMID: 32664429741247310.3390/v12070745)
Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021). (PMID: 3423434710.1038/s41586-021-03703-z)
Heinrich, B. S., Maliga, Z., Stein, D. A., Hyman, A. A. & Whelan, S. P. J. Phase transitions drive the formation of vesicular stomatitis virus replication compartments. mBio 9, e02290-17 (2018). (PMID: 30181255612344210.1128/mBio.02290-17)
Hidalgo, P. et al. Evidence that the adenovirus single-stranded DNA binding protein mediates the assembly of biomolecular condensates to form viral replication compartments. Viruses 13, 1778 (2021). (PMID: 34578359847328510.3390/v13091778)
Iserman, C. et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078–1091.e6 (2020). (PMID: 33290746769121210.1016/j.molcel.2020.11.041)
Guseva, S. et al. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci. Adv. 6, eaaz7095 (2020). (PMID: 32270045711294410.1126/sciadv.aaz7095)
Li, H. et al. Phase separation in viral infections. Trends Microbiol. 30, 1217–1231 (2022). (PMID: 3590231810.1016/j.tim.2022.06.005)
Charman, M. & Weitzman, M. D. Replication compartments of DNA viruses in the nucleus: location, location, location. Viruses 12, 151 (2020). (PMID: 32013091707718810.3390/v12020151)
Charman, M., Herrmann, C. & Weitzman, M. D. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett. 593, 3531–3550 (2019). (PMID: 31764999692841510.1002/1873-3468.13695)
Ahi, Y. S. & Mittal, S. K. Components of adenovirus genome packaging. Front. Microbiol. 7, 1503 (2016). (PMID: 27721809503397010.3389/fmicb.2016.01503)
Condezo, G. N. et al. Structures of adenovirus incomplete particles clarify capsid architecture and show maturation changes of packaging protein L1 52/55k. J. Virol. 89, 9653–9664 (2015). (PMID: 26178997454239110.1128/JVI.01453-15)
Gustin, K. E. & Imperiale, M. J. Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J. Virol. 72, 7860–7870 (1998). (PMID: 973382311010710.1128/JVI.72.10.7860-7870.1998)
Hasson, T. B., Soloway, P. D., Ornelles, D. A., Doerfler, W. & Shenk, T. Adenovirus L1 52- and 55-kilodalton proteins are required for assembly of virions. J. Virol. 63, 3612–3621 (1989). (PMID: 276097625095110.1128/jvi.63.9.3612-3621.1989)
Russell, W. C. & Skehel, J. J. The polypeptides of adenovirus-infected cells. J. Gen. Virol. 15, 45–57 (1972). (PMID: 462363710.1099/0022-1317-15-1-45)
Pombo, A., Ferreira, J., Bridge, E. & Carmo-Fonseca, M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 13, 5075–5085 (1994). (PMID: 795707339545410.1002/j.1460-2075.1994.tb06837.x)
Pied, N. & Wodrich, H. Imaging the adenovirus infection cycle. FEBS Lett. 593, 3419–3448 (2019). (PMID: 3175870310.1002/1873-3468.13690)
Su Hui Teo, C., Serwa, R. A. & O’Hare, P. Spatial and temporal resolution of global protein synthesis during HSV infection using bioorthogonal precursors and click chemistry. PLoS Pathog. 12, e1005927 (2016). (PMID: 27706239505170410.1371/journal.ppat.1005927)
Livingston, C. M., Ifrim, M. F., Cowan, A. E. & Weller, S. K. Virus-induced chaperone-enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog. 5, e1000619 (2009). (PMID: 19816571275299510.1371/journal.ppat.1000619)
Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015). (PMID: 10.1038/nphys3532)
Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018). (PMID: 2932348810.1021/acs.biochem.7b01136)
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012). (PMID: 22398450334369610.1038/nature10879)
Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010 (2017).
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019). (PMID: 30682370644527110.1016/j.cell.2018.12.035)
Alberti, S. et al. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806–4820 (2018). (PMID: 29944854621532910.1016/j.jmb.2018.06.038)
Ma, H.-C. & Hearing, P. Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging. J. Virol. 85, 7849–7855 (2011). (PMID: 21632753314792510.1128/JVI.00467-11)
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018). (PMID: 29961577606376010.1016/j.cell.2018.06.006)
Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019). (PMID: 3004587210.1074/jbc.TM118.001192)
Chong, S. & Mir, M. Towards decoding the sequence-based grammar governing the functions of intrinsically disordered protein regions. J. Mol. Biol. 433, 166724 (2021). (PMID: 3324813810.1016/j.jmb.2020.11.023)
Greig, J. A. et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol. Cell 77, 1237–1250.e4 (2020). (PMID: 3204899710.1016/j.molcel.2020.01.025)
Lin, Y.-H., Brady, J. P., Forman-Kay, J. D. & Chan, H. S. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New J. Phys. 19, 115003 (2017). (PMID: 10.1088/1367-2630/aa9369)
Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015). (PMID: 25747659435276110.1016/j.molcel.2015.01.013)
Pfitzner, S. et al. Fluorescent protein tagging of adenoviral proteins pV and pIX reveals ‘late virion accumulation compartment’. PLoS Pathog. 16, e1008588 (2020). (PMID: 32584886734319010.1371/journal.ppat.1008588)
Condezo, G. N. & San Martín, C. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog. 13, e1006320 (2017). (PMID: 28448571540949810.1371/journal.ppat.1006320)
Gustin, K. E., Lutz, P. & Imperiale, M. J. Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection. J. Virol. 70, 6463–6467 (1996). (PMID: 870928319068110.1128/jvi.70.9.6463-6467.1996)
Perlmutter, J. D. & Hagan, M. F. Mechanisms of virus assembly. Annu. Rev. Phys. Chem. 66, 217–239 (2015). (PMID: 2553295110.1146/annurev-physchem-040214-121637)
Katen, S. & Zlotnick, A. The thermodynamics of virus capsid assembly. Methods Enzymol. 455, 395–417 (2009). (PMID: 19289214279816510.1016/S0076-6879(08)04214-6)
Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002). (PMID: 1198857610.1126/science.1068539)
Busnadiego, I. et al. Host and viral determinants of Mx2 antiretroviral activity. J. Virol. 88, 7738–7752 (2014). (PMID: 24760893409778110.1128/JVI.00214-14)
Kozarsky, K. F., Jooss, K., Donahee, M., Strauss, J. F. & Wilson, J. M. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat. Genet. 13, 54–62 (1996). (PMID: 867310410.1038/ng0596-54)
Hermann, C. et al. Adenovirus-mediated ubiquitination alters protein–RNA binding and aids viral RNA processing. Nat. Microbiol. 5, 1217–1231 (2020). (PMID: 10.1038/s41564-020-0750-9)
Ostapchuk, P., Yang, J., Auffarth, E. & Hearing, P. Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J. Virol. 79, 2831–2838 (2005). (PMID: 1570900254847610.1128/JVI.79.5.2831-2838.2005)
Yan, J. et al. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors. Sci. Rep. 6, 22464 (2016). (PMID: 26934960477615810.1038/srep22464)
Wu, K., Guimet, D. & Hearing, P. The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging. J. Virol. 87, 6739–6747 (2013). (PMID: 23552425367612510.1128/JVI.00652-13)
Reich, N. C., Sarnow, P., Duprey, E. & Levine, A. J. Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. Virology 128, 480–484 (1983). (PMID: 631086910.1016/0042-6822(83)90274-X)
Sarnow, P., Sullivan, C. A. & Levine, A. J. A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology 120, 510–517 (1982). (PMID: 704873010.1016/0042-6822(82)90054-X)
Marton, M. J., Baim, S. B., Ornelles, D. A. & Shenk, T. The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J. Virol. 64, 2345–2359 (1990). (PMID: 213914124939610.1128/jvi.64.5.2345-2359.1990)
Price, A. M. et al. Novel viral splicing events and open reading frames revealed by long-read direct RNA sequencing of adenovirus transcripts. PLoS Pathog. 18, e1010797 (2022). (PMID: 36095031949927310.1371/journal.ppat.1010797)
Johnson, J. S. et al. Adenovirus protein VII condenses DNA, represses transcription, and associates with transcriptional activator E1A. J. Virol. 78, 6459–6468 (2004). (PMID: 1516373941655310.1128/JVI.78.12.6459-6468.2004)
Komatsu, T., Dacheux, D., Kreppel, F., Nagata, K. & Wodrich, H. A method for visualization of incoming adenovirus chromatin complexes in fixed and living cells. PLoS ONE 10, e0137102 (2015). (PMID: 26332038455795310.1371/journal.pone.0137102)
Price, A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020). (PMID: 33243990769199410.1038/s41467-020-19787-6)
Mészáros, B., Erdos, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018). (PMID: 29860432603093510.1093/nar/gky384)
Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501–2502 (2014). (PMID: 24825614414788310.1093/bioinformatics/btu310)
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017). (PMID: 28076807523278510.1016/j.bpj.2016.11.3200)
van Mierlo, G. et al. Predicting protein condensate formation using machine learning. Cell Rep. 34, 108705 (2021). (PMID: 3353503410.1016/j.celrep.2021.108705)
معلومات مُعتمدة: R01 AI145266 United States AI NIAID NIH HHS; R01 AI121321 United States AI NIAID NIH HHS; P30 CA016520 United States CA NCI NIH HHS; T32 GM007229 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Capsid Proteins)
0 (Viral Proteins)
0 (Intrinsically Disordered Proteins)
تواريخ الأحداث: Date Created: 20230405 Date Completed: 20230419 Latest Revision: 20231125
رمز التحديث: 20240628
DOI: 10.1038/s41586-023-05887-y
PMID: 37020020
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-05887-y