دورية أكاديمية

Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.

التفاصيل البيبلوغرافية
العنوان: Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
المؤلفون: Xu P; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. Electronic address: https://twitter.com/@XPengning., Zhang J; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA., Pan F; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA., Mahn C; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA., Roland C; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA., Sagui C; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. Electronic address: sagui@ncsu.edu., Weninger K; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. Electronic address: keith.weninger@ncsu.edu.
المصدر: Journal of molecular biology [J Mol Biol] 2023 May 15; Vol. 435 (10), pp. 168086. Date of Electronic Publication: 2023 Apr 05.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Elsevier Country of Publication: Netherlands NLM ID: 2985088R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1089-8638 (Electronic) Linking ISSN: 00222836 NLM ISO Abbreviation: J Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Amsterdam : Elsevier
Original Publication: 1959- : London : Academic Press
مواضيع طبية MeSH: DNA*/genetics , DNA*/chemistry , Trinucleotide Repeats* , Neurodegenerative Diseases*/genetics, Humans ; DNA, Complementary ; Nucleic Acid Conformation ; Trinucleotide Repeat Expansion/genetics
مستخلص: DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) ∙ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) ∙ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) ∙ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) ∙ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
References: Biochemistry. 2012 Jan 10;51(1):52-62. (PMID: 22148399)
Nucleic Acids Res. 1995 Jul 25;23(14):2706-14. (PMID: 7651831)
J Phys Chem B. 2009 May 14;113(19):6881-93. (PMID: 19374420)
Nucleic Acids Res. 2020 Mar 18;48(5):2232-2245. (PMID: 31974547)
Nat Methods. 2018 Sep;15(9):669-676. (PMID: 30171252)
Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8566-9. (PMID: 23794476)
J Phys Chem B. 2013 Dec 19;117(50):16105-9. (PMID: 24261629)
Nat Rev Genet. 2010 Nov;11(11):786-99. (PMID: 20953213)
Cell. 1995 May 19;81(4):533-40. (PMID: 7758107)
Comput Struct Biotechnol J. 2021 Apr 26;19:2819-2832. (PMID: 34093995)
Biochemistry. 2011 May 31;50(21):4441-50. (PMID: 21526744)
Genetics. 1995 Nov;141(3):825-32. (PMID: 8582629)
Nucleic Acids Res. 2022 May 20;50(9):4860-4876. (PMID: 35536254)
Biochemistry. 2010 Apr 13;49(14):3174-90. (PMID: 20180598)
ACS Chem Neurosci. 2018 May 16;9(5):1104-1117. (PMID: 29281254)
Nature. 2007 Jun 21;447(7147):932-40. (PMID: 17581576)
Nat Methods. 2016 Apr;13(4):341-4. (PMID: 26878382)
Biophys J. 2010 Aug 4;99(3):961-70. (PMID: 20682275)
Nucleic Acids Res. 2005 Mar 14;33(5):1604-17. (PMID: 15767285)
J Mol Biol. 2003 May 30;329(2):351-61. (PMID: 12758081)
Hum Mol Genet. 1999 Jan;8(1):123-8. (PMID: 9887340)
J Biol Chem. 2020 Mar 27;295(13):4134-4170. (PMID: 32060097)
Nat Rev Genet. 2005 Oct;6(10):729-42. (PMID: 16205713)
Nucleic Acids Res. 2005 Jul 21;33(13):4065-77. (PMID: 16040598)
Crit Rev Biochem Mol Biol. 2015 Mar-Apr;50(2):142-67. (PMID: 25608779)
Nat Rev Mol Cell Biol. 2010 Mar;11(3):165-70. (PMID: 20177394)
Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950-4. (PMID: 8197163)
Lancet Neurol. 2017 Jan;16(1):88-96. (PMID: 27979358)
Cells. 2021 Apr 26;10(5):. (PMID: 33925919)
Curr Opin Struct Biol. 2006 Jun;16(3):351-8. (PMID: 16713248)
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9535-9540. (PMID: 28827328)
J Neurosci Methods. 1991 Nov;40(1):71-86. (PMID: 1795554)
J Phys Chem B. 2018 Apr 26;122(16):4491-4512. (PMID: 29617130)
Molecules. 2014 Sep 03;19(9):13735-54. (PMID: 25255759)
Nucleic Acids Res. 2018 Jan 25;46(2):942-955. (PMID: 29190385)
Nucleic Acids Res. 2020 Sep 25;48(17):9899-9917. (PMID: 32821947)
DNA Repair (Amst). 2008 Jul 1;7(7):1121-34. (PMID: 18472310)
Biochemistry. 1996 Apr 16;35(15):5041-53. (PMID: 8664297)
Nat Methods. 2016 Jan;13(1):55-8. (PMID: 26569599)
J Phys Chem B. 2013 Oct 10;117(40):11932-42. (PMID: 24041226)
J Am Chem Soc. 2012 Apr 4;134(13):6033-44. (PMID: 22397401)
Annu Rev Neurosci. 2000;23:217-47. (PMID: 10845064)
Methods Enzymol. 2016;581:285-315. (PMID: 27793283)
DNA Repair (Amst). 2016 Feb;38:117-126. (PMID: 26774442)
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3535-3542. (PMID: 32015124)
J Biol Chem. 1998 Feb 27;273(9):5204-10. (PMID: 9478975)
Cell. 2019 Aug 8;178(4):887-900.e14. (PMID: 31398342)
Am J Hum Genet. 2019 Jun 6;104(6):1116-1126. (PMID: 31104771)
Annu Rev Biochem. 2015;84:199-226. (PMID: 25580529)
Nat Commun. 2022 Sep 14;13(1):5402. (PMID: 36104339)
Biophys J. 2017 Jul 11;113(1):19-36. (PMID: 28700917)
ACS Chem Neurosci. 2017 Mar 15;8(3):578-591. (PMID: 27933757)
J Phys Chem Lett. 2019 Jul 18;10(14):3985-3990. (PMID: 31241956)
Nat Rev Genet. 2004 Jun;5(6):435-45. (PMID: 15153996)
Bio Protoc. 2021 Sep 20;11(18):e4155. (PMID: 34692905)
J Mol Biol. 1998 Jan 9;275(1):3-16. (PMID: 9451434)
J Biol Chem. 2000 Jun 16;275(24):18382-90. (PMID: 10849445)
Biochemistry. 1993 Jan 19;32(2):436-54. (PMID: 8422353)
Neuron. 2022 Apr 6;110(7):1173-1192.e7. (PMID: 35114102)
Nat Commun. 2021 Jan 8;12(1):204. (PMID: 33420051)
Eur Biophys J. 2001 Jul;30(3):179-85. (PMID: 11508837)
J Biol Chem. 1996 Jan 26;271(4):1853-6. (PMID: 8567629)
ACS Omega. 2022 Oct 24;7(43):38728-38743. (PMID: 36340174)
PLoS One. 2011 Mar 29;6(3):e17951. (PMID: 21479228)
J Huntingtons Dis. 2021;10(1):75-94. (PMID: 33579865)
معلومات مُعتمدة: R01 GM118508 United States GM NIGMS NIH HHS; R01 GM132263 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Huntington's disease; hairpin slippage; kinetics; molecular dynamics; single molecule FRET; trinucleotide interrupts
المشرفين على المادة: 9007-49-2 (DNA)
0 (DNA, Complementary)
تواريخ الأحداث: Date Created: 20230406 Date Completed: 20230525 Latest Revision: 20240516
رمز التحديث: 20240516
مُعرف محوري في PubMed: PMC10191799
DOI: 10.1016/j.jmb.2023.168086
PMID: 37024008
قاعدة البيانات: MEDLINE
الوصف
تدمد:1089-8638
DOI:10.1016/j.jmb.2023.168086