دورية أكاديمية

A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins.

التفاصيل البيبلوغرافية
العنوان: A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins.
المؤلفون: Bhattacharya A; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany., Mukherjee R; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.; Max Planck Institute of Biophysics, Frankfurt, Germany., Kuncha SK; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany., Brunstein ME; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany., Rathore R; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany., Junek S; Max Planck Institute of Biophysics, Frankfurt, Germany.; Max Planck Institute for Brain Research, Frankfurt, Germany., Münch C; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany., Dikic I; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany. dikic@biochem2.uni-frankfurt.de.; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany. dikic@biochem2.uni-frankfurt.de.; Max Planck Institute of Biophysics, Frankfurt, Germany. dikic@biochem2.uni-frankfurt.de.; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany. dikic@biochem2.uni-frankfurt.de.
المصدر: Nature cell biology [Nat Cell Biol] 2023 May; Vol. 25 (5), pp. 685-698. Date of Electronic Publication: 2023 Apr 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Dynamin II*/metabolism , Autophagy*, Intracellular Membranes/metabolism ; GTPase-Activating Proteins/genetics ; GTPase-Activating Proteins/metabolism ; Lysosomes/metabolism
مستخلص: Acute lysosomal membrane damage reduces the cellular population of functional lysosomes. However, these damaged lysosomes have a remarkable recovery potential independent of lysosomal biogenesis and remain unaffected in cells depleted in TFEB and TFE3. We combined proximity-labelling-based proteomics, biochemistry and high-resolution microscopy to unravel a lysosomal membrane regeneration pathway that depends on ATG8, the lysosomal membrane protein LIMP2, the RAB7 GTPase-activating protein TBC1D15 and proteins required for autophagic lysosomal reformation, including dynamin-2, kinesin-5B and clathrin. Following lysosomal damage, LIMP2 acts as a lysophagy receptor to bind ATG8, which in turn recruits TBC1D15 to damaged membranes. TBC1D15 interacts with ATG8 proteins on damaged lysosomes and provides a scaffold to assemble and stabilize the autophagic lysosomal reformation machinery. This potentiates the formation of lysosomal tubules and subsequent dynamin-2-dependent scission. TBC1D15-mediated lysosome regeneration was also observed in a cell culture model of oxalate nephropathy.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Saftig, P. & Puertollano, R. How lysosomes sense, integrate, and cope with stress. Trends Biochem. Sci. 46, 97–112 (2021). (PMID: 3301262510.1016/j.tibs.2020.09.004)
Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019). (PMID: 3147788310.1038/s41573-019-0036-17097195)
Emmerson, B. T., Cross, M., Osborne, J. M. & Axelsen, R. A. Reaction of MDCK cells to crystals of monosodium urate monohydrate and uric acid. Kidney Int. 37, 36–43 (1990). (PMID: 229980710.1038/ki.1990.5)
Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008). (PMID: 1895597110.1038/onc.2008.310)
Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 30, 12535–12544 (2010). (PMID: 2084414810.1523/JNEUROSCI.1920-10.20106633458)
Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360, eaar5078 (2018). (PMID: 2962262610.1126/science.aar50786195421)
Radulovic, M. et al. ESCRT‐mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, e99753 (2018). (PMID: 3031496610.15252/embj.2018997536213280)
Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013). (PMID: 2392155110.1038/emboj.2013.1713770333)
Papadopoulos, C. & Meyer, H. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27, 1330–1341 (2017). (PMID: 10.1016/j.cub.2017.11.012)
Radulovic, M. et al. Cholesterol transfer via endoplasmic reticulum contacts mediates lysosome damage repair. EMBO J. 41, e112677 (2022). (PMID: 3640882810.15252/embj.20221126779753466)
Tan, J. X. & Finkel, T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609, 815–821 (2022). (PMID: 3607115910.1038/s41586-022-05164-49450835)
Napolitano, G. & Ballabio, A. TFEB at a glance. J. Cell Sci. 129, 2475–2481 (2016). (PMID: 272523824958300)
Jia, J. et al. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52, 69–87 (2020). (PMID: 3181379710.1016/j.devcel.2019.10.025)
Yoshida, Y. et al. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy. Proc. Natl Acad. Sci. USA 114, 8574–8579 (2017). (PMID: 2874375510.1073/pnas.17026151145559013)
Koerver, Lisa et al. The ubiquitin‐conjugating enzyme UBE 2 QL 1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep. 20, e48014 (2019). (PMID: 3143262110.15252/embr.2019480146776906)
Eapen, V. V., Swarup, S., Hoyer, M. J., Paulo, J. A. & Harper, J. W. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 10, e72328 (2021). (PMID: 3458566310.7554/eLife.723288523161)
Fujita, N. et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 203, 115–128 (2013). (PMID: 2410029210.1083/jcb.2013041883798248)
Chauhan, S. et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39, 13–27 (2016). (PMID: 2769350610.1016/j.devcel.2016.08.0035104201)
Papadopoulos, C. et al. VCP/p97 cooperates with YOD 1, UBXD 1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. 36, 135–150 (2017). (PMID: 2775362210.15252/embj.201695148)
Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010). (PMID: 2052632110.1038/nature090762920749)
Chen, Y. & Yu, L. Recent progress in autophagic lysosome reformation. Traffic 18, 358–361 (2017). (PMID: 2837105210.1111/tra.12484)
Thiele, D. L. & Lipsky, P. E. Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc. Natl Acad. Sci. USA 87, 83–87 (1990). (PMID: 229660710.1073/pnas.87.1.8353204)
Onoue, K. et al. Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J. Cell Sci. 126, 176–185 (2013). (PMID: 2307717810.1242/jcs.111211)
Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018). (PMID: 2936486810.1038/nature254866209448)
Popovic, D. et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol. 32, 1733–1744 (2012). (PMID: 2235499210.1128/MCB.06717-113347240)
Repnik, U. et al. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. J. Cell Sci. 130, 3124–3140 (2017). (PMID: 28754686)
Jacomin, A. C., Samavedam, S., Promponas, V. & Nezis, I. P. iLIR database: a web resource for LIR motif-containing proteins in eukaryotes. Autophagy 12, 1945–1953 (2016). (PMID: 2748419610.1080/15548627.2016.12070165079668)
Yamano, K., Fogel, A. I., Wang, C., van der Bliek, A. M. & Youle, R. J. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3, e01612 (2014). (PMID: 2456947910.7554/eLife.016123930140)
Peralta, E. R., Martin, B. C. & Edinger, A. L. Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence. J. Biol. Chem. 285, 16814–16821 (2010). (PMID: 2036373610.1074/jbc.M110.1116332878074)
Sun, J., Deghmane, A.-E., Bucci, C. & Hmama, Z. Detection of activated Rab7 GTPase with an immobilized RILP probe. Methods Mol. Biol. 531, 57–69 (2009). (PMID: 1934731110.1007/978-1-59745-396-7_5)
Fletcher, K. et al. The WD 40 domain of ATG 16L1 is required for its non‐canonical role in lipidation of LC 3 at single membranes. EMBO J. 37, e97840 (2018). (PMID: 2931742610.15252/embj.2017978405813257)
Nakamura, S. et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol. 22, 1252–1263 (2020). (PMID: 3298925010.1038/s41556-020-00583-9)
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). (PMID: 3094431310.1038/s41467-019-09234-66447622)
Chen, Y. N. et al. Crystal structure of TBC1D15 GTPase‐activating protein (GAP) domain and its activity on Rab GTPases. Protein Sci. 26, 834–846 (2017). (PMID: 2816875810.1002/pro.31325368074)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 3426584410.1038/s41586-021-03819-28371605)
Khundadze, M. et al. Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. Autophagy 17, 3690–3706 (2021). (PMID: 3361860810.1080/15548627.2021.18918488632344)
Shin, D. et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol. Cell 77, 164–179 (2020). (PMID: 3173245710.1016/j.molcel.2019.10.0196941232)
Willforss, J., Chawade, A. & Levander, F. NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J. Proteome Res. 18, 732–740 (2018). (PMID: 3027707810.1021/acs.jproteome.8b00523)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511)
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014). (PMID: 2494270010.1074/mcp.M113.0315914159666)
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). (PMID: 2734871210.1038/nmeth.3901)
المشرفين على المادة: EC 3.6.5.5 (Dynamin II)
0 (GTPase-Activating Proteins)
تواريخ الأحداث: Date Created: 20230406 Date Completed: 20230517 Latest Revision: 20230629
رمز التحديث: 20231215
DOI: 10.1038/s41556-023-01125-9
PMID: 37024685
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-023-01125-9