دورية أكاديمية

Tetraacetyl riboflavin derivative mediates caspase 3/7 activation via MAPK in A431 cells upon blue light influence.

التفاصيل البيبلوغرافية
العنوان: Tetraacetyl riboflavin derivative mediates caspase 3/7 activation via MAPK in A431 cells upon blue light influence.
المؤلفون: Buniowska I; Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland., Wronski N; Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland., Insinska-Rak M; Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland., Sikorski M; Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland., Wolnicka-Glubisz A; Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
المصدر: Photochemistry and photobiology [Photochem Photobiol] 2024 Jan-Feb; Vol. 100 (1), pp. 204-213. Date of Electronic Publication: 2023 May 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Photobiology Country of Publication: United States NLM ID: 0376425 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-1097 (Electronic) Linking ISSN: 00318655 NLM ISO Abbreviation: Photochem Photobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004->: Lawrence KS : American Society for Photobiology
Original Publication: Augusta, GA: American Society for Photobiology, <1996->
مواضيع طبية MeSH: Blue Light* , Poly(ADP-ribose) Polymerase Inhibitors*/pharmacology, Caspase 3/metabolism ; Caspase 3/pharmacology ; p38 Mitogen-Activated Protein Kinases/metabolism ; Apoptosis ; Phosphorylation ; Riboflavin/pharmacology ; Riboflavin/metabolism
مستخلص: An acetylated riboflavin derivative, 3-methyl-tetraacetyl riboflavin (3MeTARF), is a compound with high photostability and photophysical properties similar to riboflavin, including the ability to photogenerate singlet oxygen. In the present study, we compared the effects of irradiation on A431 cancer cells with blue LED light (438 nm) in the presence of 3MeTARF and riboflavin on MAPK phosphorylation, apoptosis, caspase 3/7 activation and PARP cleavage. We observed that photogenerated oxidative stress in this reaction activates MAPK by increasing phosphorylation of p38 and JNK proteins. Preincubation of cells with inhibitors specific for phosphorylation of p38 and JNK proteins (SB203580, SP600125), respectively, results in decreased caspase 3/7 activation and PARP cleavage. We showed that the tetraacetyl derivative more effectively activates MAPK and skin cancer cell death compared to riboflavin. These data, together with results of our previous study, support the hypothesis that 3MeTARF, of riboflavin, might be more useful and desirable as a compound for use in photodynamic oxidation processes, including its therapeutic potential.
(© 2023 American Society for Photobiology.)
References: Cui H, Hwang HM, Cook S, Zeng K. Effect of photosensitizer riboflavin on the fate of 2,4,6-trinitrotoluene in a freshwater environment. Chemosphere. 2001;44:621-625.
Cui H, Hwang HM, Zeng K, Glover H, Yu HT, Liu YM. Riboflavin-photosensitized degradation of atrazine in a freshwater environment. Chemosphere. 2002;47:991-999.
Haggi E, Bertolotti S, Miskoski S, Amat-Guerri F, Garcia N. Environmental photodegradation of pyrimidine fungicides - kinetics of the visible-light-promoted interactions between riboflavin and 2-amino-4-hydroxy-6-methylpyrimidine. Can J Chem. 2002;80:62-67.
Linden AA, Kruger L, Backvall JE. Highly selective sulfoxidation of allylic and vinylic sulfides by hydrogen peroxide using a flavin as catalyst. J Org Chem. 2003;68:5890-5896.
Dad'ova J, Svobodova E, Sikorski M, König B, Cibulka R. Photooxidation of sulfides to sulfoxides mediated by tetra-o-acetylriboflavin and visible light. ChemCatChem. 2012;4:620-623.
Cibulka R, Fraaije M. Flavin-Based Catalysis: Principles and Applications. Wiley-VCH; 2021.
Pavanello A, Fabbri D, Calza P, Battiston D, Miranda MA, Marin ML. Photocatalytic degradation of drugs in water mediated by acetylated riboflavin and visible light: a mechanistic study. J Photochem Photobiol B. 2021;221:112250-112260.
Akasov RA, Sholina NV, Khochenkov DA, et al. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. Sci Rep. 2019;9:9679.
Wangsuwan S, Meephansan J. Comparative study of photodynamic therapy with riboflavin-tryptophan gel and 13% 5-aminolevulinic acid in the treatment of mild to moderate acne vulgaris. Clin Cosmet Investig Dermatol. 2019;12:806-812.
Wolnicka-Glubisz A, Pawlak A, Insińska-Rak M, Zadlo A. Analysis of photoreactivity and phototoxicity of riboflavin's analogue 3MeTARF. J Photochem Photobiol B. 2020;205:111820.
Insińska-Rak M, Sikorska E, Bourdelande JL, et al. New photochemically stable riboflavin analogue-3-methyl-riboflavin tetraacetate. J Photochem Photobiol A. 2007;186:14-23.
Insińska-Rak M, Golczak A, Sikorski M. Photochemistry of riboflavin derivatives in methanolic solutions. J Phys Chem A. 2012;116:1199-1207.
Silva AV, Lopez-Sanchez A, Junqueira HC, Rivas L, Baptista MS, Orellana G. Riboflavin derivatives for enhanced photodynamic activity against Leishmania parasites. Tetrahedron. 2015;71:457-462.
Moore WM, Baylor J. The photochemistry of riboflavin. IV. The photobleaching of some nitrogen-9 substituted isoalloxazines and flavins. J Am Chem Soc. 1969;91:7170-7179.
Schuman Jorns M, Schollnhammer G, Hemmerich P. Intramolecular addition of riboflavin side-chain - anion-catalyzed neutral photochemistry. Eur J Biochem. 1975;57:35-48.
Insińska-Rak M, Sikorski M. Riboflavin interactions with oxygen - a survey from the photochemical perspective. Chem A Eur J. 2014;20:15280-15291.
Wolnicka-Glubisz A, Olchawa M, Duda M, Pabisz P, Wisniewska-Becker A. The role of singlet oxygen in photoreactivity and phototoxicity of curcumin. Photochem Photobiol. 2022;99:57-67.
Skalniak L, Smejda M, Cierniak A, et al. p38 but not p53 is responsible for UVA-induced MCPIP1 expression. Mech Ageing Dev. 2018;172:96-106.
Kuryłowicz K, Cierniak A, Madej E, Skalniak L, Wolnicka-Głubisz A. Resveratrol enhances apoptosis induced by the heterocyclic aromatic amines in p53-wt LoVo cells, but not in p53-deficient HaCaT cells. Acta Biochim Pol. 2020;67:605-611.
Juarez AV, Sosa LDV, De Paul AL, et al. Riboflavin acetate induces apoptosis in squamous carcinoma cells after photodynamic therapy. J Photochem Photobiol B. 2015;153:445-454.
Wrona M, Patel K, Wardman P. Reactivity of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide and hydroxyl radicals. Free Radic Biol Med. 2005;38:262-270.
Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. PNAS. 2008;105(35):12815-12819.
Shi Y. Caspase activation: revisiting the induced proximity model. Cell. 2004;117:855-858.
Yang MY, Chang CJ, Chen L-Y. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. J Photochem Photobiol B: Biol. 2017;173:325-332.
Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010;8:1-11. doi:10.1186/1478-811X-8-31.
Nakashima Y, Ohta S, Wolf AM. Blue light-induced oxidative stress in live skin. Free Radic Biol Med. 2017;108:300-310.
Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54:659.
Baptista MS, Cadet J, Di Mascio P, et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol. 2017;93:912-919.
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization reactions of biomolecules: definition, targets and mechanisms. Photochem Photobiol. 2021;97:1456-1483.
Bartosz G. Druga twarz tlenu. PWN; 1995.
Yoon HE, Oh SH, Kim SA, Yoon JH, Ahn SG. Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells. Oncol Rep. 2014;31:137-144.
Tasso TT, Schlothauer JC, Junqueira HC, et al. Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. J Am Chem Soc. 2019;141(39):15547-15556.
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981-990.
Chan WH, Wu HJ. Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem. 2004;92(1):200-212.
Schubert P, Coupland D, Culibrk B, Goodrich RP, Devine DV. Riboflavin and ultraviolet light treatment of platelets triggers p38MAPK signaling: inhibition significantly improves in vitro platelet quality after pathogen reduction treatment. Transfusion. 2013;53(12):3164-3173.
Chen Z, Schubert P, Bakkour S, Culibrk B, Busch MP, Devine DV. p38 mitogen-activated protein kinase regulates mitochondrial function and microvesicle release in riboflavin- and ultraviolet light-treated apheresis platelet concentrates. Transfusion. 2017;57(5):1199-1207.
Assefa Z, Vantieghem A, Garmyn M, et al. p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J Biol Chem. 2000;275(28):21416-21421.
معلومات مُعتمدة: 2012/05/B/NZ1/00004 Narodowe Centrum Nauki; 2017/27/B/ST4/02494 Narodowe Centrum Nauki
فهرسة مساهمة: Keywords: 3MeTRAF; MAPK; apoptosis; blue light; caspase; riboflavin; skin cancer
المشرفين على المادة: EC 3.4.22.- (Caspase 3)
0 (Poly(ADP-ribose) Polymerase Inhibitors)
EC 2.7.11.24 (p38 Mitogen-Activated Protein Kinases)
TLM2976OFR (Riboflavin)
تواريخ الأحداث: Date Created: 20230408 Date Completed: 20240117 Latest Revision: 20240117
رمز التحديث: 20240117
DOI: 10.1111/php.13806
PMID: 37029736
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-1097
DOI:10.1111/php.13806