دورية أكاديمية

Improved analysis of folpet and captan in foods using liquid chromatography-triple quadrupole linear ion trap mass spectrometry: applying mass filtering, collision, and trapping conditions.

التفاصيل البيبلوغرافية
العنوان: Improved analysis of folpet and captan in foods using liquid chromatography-triple quadrupole linear ion trap mass spectrometry: applying mass filtering, collision, and trapping conditions.
المؤلفون: El-Sheikh AA; Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Dokki, P.O. Box 12311, Giza, Egypt.; Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, P.O. Box 11884, Cairo, Egypt., Elhamalawy OH; Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, P.O. Box 11884, Cairo, Egypt., Taha SM; Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Dokki, P.O. Box 12311, Giza, Egypt. sherif2taha@gmail.com., Eissa FI; Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, P.O. Box 11884, Cairo, Egypt.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2023 Jun; Vol. 415 (14), pp. 2693-2703. Date of Electronic Publication: 2023 Apr 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مواضيع طبية MeSH: Captan* , Malus*/chemistry, Flour/analysis ; Reproducibility of Results ; Triticum ; Gas Chromatography-Mass Spectrometry/methods ; Chromatography, Liquid/methods ; Chromatography, High Pressure Liquid
مستخلص: Accurate and highly sensitive analysis of folpet and captan was accomplished using liquid chromatography-triple quadrupole linear ion trap mass spectrometry (LC-QqQIT) with selective ion mode; mass filtering, collision, and trapping condition. Dimensional mass spectrometry (MS 3 ) parameters were optimized for the residue detection of folpet and captan in six food commodities (apples, tomatoes, sweet pepper, wheat flour, sesame seeds, and fennel seeds). The sample preparation method was based on the known QuEChERS protocol, except a mixture of acetonitrile/acetone was used for the sample extraction from the sesame seeds. The robustness and reliability of the developed MS 3 method were demonstrated by performing a full validation, according to SANTE/11312/2021, at 0.01-0.25 mg/kg. Recovery ranged from 83 to 118% with a relative standard deviation below 19% in all the tested commodities, and limits of quantifications (LOQs) were 0.01 mg/kg in apples and tomatoes; 0.03 mg/kg in sweet pepper; and 0.05 mg/kg in wheat flour, sesame seeds, and fennel seeds. Monitoring results showed that about 90% of apples contained captan residue, and in sweet pepper, concentrations of captan and folpet as high as 1.57 and 0.97 mg/kg were found, respectively. The novel developed MS 3 method enabled more reliable identification of these commonly problematic fungicides at lower LOQs than previously reported methods.
(© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.)
References: FAO STAT. Food and agriculture organization (FAO) of the United Nations. 2022.  https://www.fao.org/food-agriculture-statistics/en/ .
Ge H, Chen L, Su Y, Jin C, Ge RS. Effects of folpet, captan, and captafol on human aromatase in JEG-3 cells. Pharmacology. 2018;102:81–7. https://doi.org/10.1159/000484171 . (PMID: 10.1159/00048417129953993)
FAO. Folpet, extensive information.  1998.  http://www.fao.org/fileadmin/templates/agphome/docume%0Ants/Pests_Pesticides/JMPR/Evaluation2017/CAPTAN__007_.pdf .
FAO. Captan, Extensive information. 2017.  https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation2017/CAPTAN__007_.pdf .
Berthet A, Bouchard M, Schüpfer P, Vernez D, Danuser B, Huynh CK. Liquid chromatography-tandem mass spectrometry (LC/APCI-MS/MS) methods for the quantification of captan and folpet phthalimide metabolites in human plasma and urine. Anal Bioanal Chem. 2011;399:2243–55. https://doi.org/10.1007/s00216-010-4601-z . (PMID: 10.1007/s00216-010-4601-z21229238)
Gordon EB. Captan and Folpet. Third Edit: Elsevier Inc; 2004.
Bellisai G, Bernasconi G, Brancato A, Cabrera LC, Castellan I, Ferreira L, Giner G, Greco L, Jarrah S, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Robinson T, Ruocco S, Santos M, Scarlato AP, Theobald A (2022) Modification of the existing maximum residue level for folpet in lettuces. 20:1–24. https://doi.org/10.2903/j.efsa.2022.7309 .
Organtini K, Leonard S, Hird S, Mccall E, Cleland G. A new strategy for the determination of captan and folpet in food matrices a. Waters Appl Notes. 2017.  https://www.waters.com/webassets/cms/library/docs/2017nacrw_organtini_unispray.pdf .
Huertas-Pérez JF, Ernest M, Varela J, Badoud F. Quantification of folpet and phthalimide in food by gas chromatography and mass spectrometry: overcoming potential analytical artefacts. Food Chem. 2018;260:213–20. https://doi.org/10.1016/j.foodchem.2018.04.002 . (PMID: 10.1016/j.foodchem.2018.04.00229699665)
Geis-Asteggiante L, Lehotay SJ, Heinzen H. Effects of temperature and purity of magnesium sulfate during extraction of pesticide residues using the QuEChERS method. J AOAC Int. 2012;95:1311–8. https://doi.org/10.5740/jaoacint.SGE_Geis-Asteggiante . (PMID: 10.5740/jaoacint.SGE_Geis-Asteggiante23175960)
EURL-SRM. Analysis of captan, folpet and their respective metabolites phthalimide and tetrahydrophthalimide via LC-MS/MS either directly or following hydrolysis. In: Anal Obs Rep. 2019.  http://www.eurl-pesticides.eu/library/docs/srm/EurlSrm_Observation_Captan_Folpet_LC-V1.pdf .
Schenck FJ, Lehotay SJ. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J Chromatogr A. 2000;868:51–61. https://doi.org/10.1016/S0021-9673(99)01137-1 . (PMID: 10.1016/S0021-9673(99)01137-110677079)
European Commission Regulation. Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for boscalid, clothianidin, thiamethoxam, folpet and tolclofos-methyl in or on certain products. Off J Eur Union. 2018;2016:48–119.
European Commission Regulation. Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for captan, propiconazole and spiroxamine in or on certain products. Off J Eur Union. 2018;2016:48–119.
Abo-Gaida AAH, Shendy AH, Taha SM, Mahmoud HA, Attallah ER, Fernandez-Alba AR. Fennel-seeds extract as an analyte protectant for the GC-MS/MS residue analysis of 182 pesticide in strawberries: comparing the manual mixing and sandwich injection. J Chromatogr Open. 2022;2:100056. https://doi.org/10.1016/j.jcoa.2022.100056 . (PMID: 10.1016/j.jcoa.2022.100056)
Uclés S, Hakme E, Ferrer C, Fernández-Alba AR. Analysis of thermally labile pesticides by on-column injection gas chromatography in fruit and vegetables. Anal Bioanal Chem. 2018;410:6861–71. https://doi.org/10.1007/s00216-018-1286-1 . (PMID: 10.1007/s00216-018-1286-130105623)
Cutillas V, Jesús F, Ferrer C, Fernández-Alba AR (2021) Overcoming difficulties in the evaluation of captan and folpet residues by supercritical fluid chromatography coupled to mass spectrometry. Talanta 223. https://doi.org/10.1016/j.talanta.2020.121714.
Oulkar DP, Shinde R, Khan Z, Organtini K, Leonard S, Banerjee K. Improved analysis of captan, tetrahydrophthalimide, captafol, folpet, phthalimide, and iprodione in fruits and vegetables by liquid chromatography tandem mass spectrometry. Food Chem. 2019;301:125216. https://doi.org/10.1016/j.foodchem.2019.125216 . (PMID: 10.1016/j.foodchem.2019.12521631404804)
Shinde R, Shiragave P, Lakade A, Thorat P, Banerjee K. Multi-residue analysis of captan, captafol, folpet, and iprodione in cereals using liquid chromatography with tandem mass spectrometry. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2019;36:1688–95. https://doi.org/10.1080/19440049.2019.1662953 . (PMID: 10.1080/19440049.2019.166295331535952)
Oppermann U, Moreau S, Toinon D, Europa S, Corporation GS. Analysis of captan, folpet and their derivatives in food with APCI-LCMS-8060. In: SHIMADZU Appl Notes. 2007.  https://www.shimadzu.eu/sites/shimadzu.seg/files/SEG-images/Events/PDFs/Analysis_of_Captan_Folpet_and_their_derivatives_in_food_with_APCI-LCMS-8060.pdf .
Barreda M, López FJ, Villarroya M, Beltran J, García-BAUDÍN JM, Hernández F. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical ionization-mass spectrometry. J AOAC Int. 2006;89:1080–7. https://doi.org/10.1093/jaoac/89.4.1080 . (PMID: 10.1093/jaoac/89.4.108016915849)
Zang X, Wang J, Wang O, Wang M, Ma J, Xi G, Wang Z. Analysis of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction combined with gas chromatography. Anal Bioanal Chem. 2008;392:749–54. https://doi.org/10.1007/s00216-008-2296-1 . (PMID: 10.1007/s00216-008-2296-118665351)
King R, Fernandez-metzler C. The use of Qtrap technology in drug metabolism. 2006;7:541–5. https://doi.org/10.2174/138920006777697936 . (PMID: 10.2174/138920006777697936)
Pailleux F, Beaudry F. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer. J Chromatogr B. 2014;947–948:164–7. https://doi.org/10.1016/j.jchromb.2013.12.025 . (PMID: 10.1016/j.jchromb.2013.12.025)
Lakowski TM, Szeitz A, Pak ML, Thomas D, Vhuiyan MI, Kotthaus J, Clement B, Frankel A. MS 3 fragmentation patterns of monomethylarginine species and the quantification of all methylarginine species in yeast using MRM 3. J Proteomics. 2013;80:43–54. https://doi.org/10.1016/j.jprot.2013.01.003 . (PMID: 10.1016/j.jprot.2013.01.00323333926)
Pihlström T, Fernández-Alba AR, Ferrer Amate C, Erecius Poulsen M, Lippold R, Carrasco Cabrera L, Pelosi P, Valverde A, Mol H, Jezussek M, Malato O, Štěpán R. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed SANTE 11312/2021. 2022. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf . Accessed 22 Mar 2022.
Taha SM. A rapid sensitive and selective GC-Ms/Ms method for multi residue analysis of a large number of pesticides in chamomile. Egypt J Chem. 2021;64:605–22. https://doi.org/10.21608/EJCHEM.2020.51066.3046 . (PMID: 10.21608/EJCHEM.2020.51066.3046)
Taha S, Al-Kharosi A, Al-Sabari W, AL-shidhani F, Alfarsi S (2020) A simple method for simultaneous determination of commonly used artificial food colors and preservatives in soda, jam, and yogurt by HPLC-PDA. Brazilian J Anal Chem 7. https://doi.org/10.30744/brjac.2179-3425.AR-23-2019.
Gross JH. Textbook, mass spectrometry, 3rd ed. Springer Int Publ AG 1040:1–4. 2017. https://doi.org/10.1007/978-3-319-54398-7 .
Monteiro SH, Lehotay SJ, Sapozhnikova Y, Ninga E, Lightfield AR, Ninga E, Lightfield AR. High-throughput mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants by ultra-high-performance liquid chromatography-tandem mass spectrometry and robotic mini-solid-phase extraction cleanup + low-pres. 2020.
European Commission. Directorate-general, EU pesticides database, pesticide residues, and the MRLs. In: Regul. No 1107/2009. 2021.  https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls .
فهرسة مساهمة: Keywords: Captan; Folpet; LC-QqQIT; Linear ion trap; MS3; QuEChERS
المشرفين على المادة: EOL5G26Q9F (Captan)
X5NFK36917 (folpet)
تواريخ الأحداث: Date Created: 20230410 Date Completed: 20230517 Latest Revision: 20230517
رمز التحديث: 20240628
DOI: 10.1007/s00216-023-04667-x
PMID: 37037911
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-023-04667-x