دورية أكاديمية

The little skate genome and the evolutionary emergence of wing-like fins.

التفاصيل البيبلوغرافية
العنوان: The little skate genome and the evolutionary emergence of wing-like fins.
المؤلفون: Marlétaz F; Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. ferdinand.marletaz@gmail.com.; Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan. ferdinand.marletaz@gmail.com., de la Calle-Mustienes E; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Acemel RD; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.; Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany., Paliou C; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Naranjo S; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Martínez-García PM; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Cases I; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Sleight VA; Department of Zoology, University of Cambridge, Cambridge, UK.; School of Biological Sciences, University of Aberdeen, Aberdeen, UK., Hirschberger C; Department of Zoology, University of Cambridge, Cambridge, UK., Marcet-Houben M; Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain.; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain., Navon D; Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA., Andrescavage A; Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA., Skvortsova K; Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia., Duckett PE; Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia., González-Rajal Á; Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia., Bogdanovic O; Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia., Gibcus JH; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA., Yang L; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA., Gallardo-Fuentes L; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Sospedra I; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Lopez-Rios J; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain., Darbellay F; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland., Visel A; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; US Department of Energy Joint Genome Institute, Berkeley, CA, USA.; School of Natural Sciences, University of California, Merced, CA, USA., Dekker J; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA., Shubin N; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA., Gabaldón T; Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain.; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain., Nakamura T; Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA. nakamura@dls.rutgers.edu., Tena JJ; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain. jjtenagu@upo.es., Lupiáñez DG; Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany. Dario.Lupianez@mdc-berlin.de., Rokhsar DS; Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan. dsrokhsar@gmail.com.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. dsrokhsar@gmail.com.; Chan-Zuckerberg Biohub, San Francisco, CA, USA. dsrokhsar@gmail.com., Gómez-Skarmeta JL; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
المصدر: Nature [Nature] 2023 Apr; Vol. 616 (7957), pp. 495-503. Date of Electronic Publication: 2023 Apr 12.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Animal Fins*/anatomy & histology , Genomics* , Skates, Fish*/anatomy & histology , Skates, Fish*/genetics , Biological Evolution* , Genome*, Animals ; Homeodomain Proteins/genetics ; Homeodomain Proteins/metabolism ; Zebrafish/genetics ; Genes, Reporter/genetics
مستخلص: Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments 1,2 . However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
(© 2023. The Author(s).)
التعليقات: Comment in: Nature. 2023 Apr;616(7957):440-441. (PMID: 37045951)
References: Nakamura, T. et al. Molecular mechanisms underlying the exceptional adaptations of batoid fins. Proc. Natl Acad. Sci. USA 112, 15940–15945 (2015). (PMID: 26644578470299510.1073/pnas.1521818112)
Turner, N. et al. The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids. Proc. Biol. Sci. 286, 20191571 (2019). (PMID: 316620896842844)
Shimeld, S. M. & Holland, P. W. Vertebrate innovations. Proc. Natl Acad. Sci. USA 97, 4449–4452 (2000). (PMID: 107810423432010.1073/pnas.97.9.4449)
Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022). (PMID: 35108053880968810.1126/sciadv.abi5884)
Touceda-Suárez, M. et al. Ancient genomic regulatory blocks are a source for regulatory gene deserts in vertebrates after whole genome duplications. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa123 (2020).
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018). (PMID: 30464347629249710.1038/s41586-018-0734-6)
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). (PMID: 22495300335644810.1038/nature11082)
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). (PMID: 22495304355514410.1038/nature11049)
Berthelot, C., Muffato, M., Abecassis, J. & Roest Crollius, H. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep. 10, 1913–1924 (2015). (PMID: 2580102810.1016/j.celrep.2015.02.046)
Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015). (PMID: 25959774479153810.1016/j.cell.2015.04.004)
Real, F. M. et al. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science https://doi.org/10.1126/science.aaz2582 (2020).
Acemel, R. D. & Gómez-Skarmeta, J. L. Reprogramming nuclear architecture: just a TAD. Cell Stem Cell 24, 679–681 (2019). (PMID: 3105112910.1016/j.stem.2019.04.007)
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018). (PMID: 3036716510.1038/s41576-018-0060-8)
Stingo, V. & Rocco, L. Selachian cytogenetics: a review. Genetica 111, 329–347 (2001). (PMID: 1184117810.1023/A:1013747215866)
Hirschberger, C., Sleight, V. A., Criswell, K. E., Clark, S. J. & Gillis, J. A. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Mol. Biol. Evol. 38, 4187–4204 (2021). (PMID: 33905525847617610.1093/molbev/msab123)
Chorostecki, U., Molina, M., Pryszcz, L. P. & Gabaldón, T. MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy across the tree of life. Nucleic Acids Res. 48, W553–W557 (2020). (PMID: 32343307731945810.1093/nar/gkaa282)
Fuentes, D. et al. PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res. 50, D1062–D1068 (2021). (PMID: 872827110.1093/nar/gkab966)
Irisarri, I. et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370–1378 (2017). (PMID: 28890940558465610.1038/s41559-017-0240-5)
Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018). (PMID: 3029774510.1038/s41559-018-0673-5)
Kuraku, S. Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. Dev. Biol. 477, 262–272 (2021). (PMID: 3410216810.1016/j.ydbio.2021.06.001)
Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009). (PMID: 1963056210.1146/annurev-genom-082908-150001)
Perry, B. W., Schield, D. R., Adams, R. H. & Castoe, T. A. Microchromosomes exhibit distinct features of vertebrate chromosome structure and function with underappreciated ramifications for genome evolution. Mol. Biol. Evol. 38, 904–910 (2021). (PMID: 3298680810.1093/molbev/msaa253)
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020). (PMID: 32313176726991210.1038/s41559-020-1156-z)
Nakatani, Y., Takeda, H., Kohara, Y. & Morishita, S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17, 1254–1265 (2007). (PMID: 17652425195089410.1101/gr.6316407)
Nakatani, Y. et al. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 12, 4489 (2021). (PMID: 34301952830263010.1038/s41467-021-24573-z)
Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373–1384 (2021). (PMID: 34462605842362410.1038/s41588-021-00914-y)
Dalloul, R. A. et al. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 8, e1000475 (2010). (PMID: 20838655293545410.1371/journal.pbio.1000475)
Zhang, Y. et al. The white-spotted bamboo shark genome reveals chromosome rearrangements and fast-evolving immune genes of cartilaginous fish. iScience 23, 101754 (2020). (PMID: 33251490767771010.1016/j.isci.2020.101754)
Mitros, T. et al. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8–20 (2019). (PMID: 3098079910.1016/j.ydbio.2019.03.015)
Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021). (PMID: 34045355817204110.1126/science.abe2218)
Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017). (PMID: 28826674559108110.1016/j.molcel.2017.07.022)
Acemel, R. D. et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 48, 336–341 (2016). (PMID: 2682975210.1038/ng.3497)
Gibson-Brown, J. J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93–101 (1996). (PMID: 879815010.1016/0925-4773(96)00514-X)
Pradeepa, M. M., Sutherland, H. G., Ule, J., Grimes, G. R. & Bickmore, W. A. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 8, e1002717 (2012). (PMID: 22615581335507710.1371/journal.pgen.1002717)
Onimaru, K. et al. Developmental hourglass and heterochronic shifts in fin and limb development. eLife 10, e62865 (2021). (PMID: 33560225793269910.7554/eLife.62865)
Wang, J. S., Infante, C. R., Park, S. & Menke, D. B. PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev. Biol. 434, 186–195 (2018). (PMID: 2927344010.1016/j.ydbio.2017.12.013)
DeLaurier, A., Schweitzer, R. & Logan, M. Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev. Biol. 299, 22–34 (2006). (PMID: 1698980110.1016/j.ydbio.2006.06.055)
Swenson, J. D., Klomp, J., Fisher, R. A. & Crow, K. D. How the devil ray got its horns: the evolution and development of cephalic lobes in myliobatid stingrays (Batoidea: Myliobatidae). Front. Ecol. Evol. 6, 181 (2018). (PMID: 10.3389/fevo.2018.00181)
Barry, S. N. & Crow, K. D. The role of HoxA11 and HoxA13 in the evolution of novel fin morphologies in a representative batoid (Leucoraja erinacea). Evodevo 8, 24 (2017). (PMID: 29214009570997410.1186/s13227-017-0088-4)
Lopez-Rios, J. et al. GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev. Cell 22, 837–848 (2012). (PMID: 22465667448639110.1016/j.devcel.2012.01.006)
Tanaka, M. Fins into limbs: autopod acquisition and anterior elements reduction by modifying gene networks involving 5′Hox, Gli3, and Shh. Dev. Biol. 413, 1–7 (2016). (PMID: 2699236610.1016/j.ydbio.2016.03.007)
Bastida, M. F. et al. The formation of the thumb requires direct modulation of Gli3 transcription by Hoxa13. Proc. Natl Acad. Sci. USA 117, 1090–1096 (2020). (PMID: 31896583696949710.1073/pnas.1919470117)
Amin, S. et al. Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev. Cell 32, 265–277 (2015). (PMID: 25640223433390410.1016/j.devcel.2014.12.024)
Fromental-Ramain, C. et al. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122, 2997–3011 (1996). (PMID: 889821410.1242/dev.122.10.2997)
Sheth, R. et al. Distal limb patterning requires modulation of cis-regulatory activities by HOX13. Cell Rep. 17, 2913–2926 (2016). (PMID: 27974206569771810.1016/j.celrep.2016.11.039)
Nakamura, T., Gehrke, A. R., Lemberg, J., Szymaszek, J. & Shubin, N. H. Digits and fin rays share common developmental histories. Nature 537, 225–228 (2016). (PMID: 27533041516157610.1038/nature19322)
Freitas, R., Gómez-Marín, C., Wilson, J. M., Casares, F. & Gómez-Skarmeta, J. L. Hoxd13 contribution to the evolution of vertebrate appendages. Dev. Cell 23, 1219–1229 (2012). (PMID: 2323795410.1016/j.devcel.2012.10.015)
Letelier, J. et al. The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits. Proc. Natl Acad. Sci. USA 118, e2100575118 (2021). (PMID: 34750251867308110.1073/pnas.2100575118)
Bogdanović, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–426 (2016). (PMID: 26928226591225910.1038/ng.3522)
Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013). (PMID: 23995138409577610.1038/ng.2746)
Kragesteen, B. K. et al. Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat. Genet. 50, 1463–1473 (2018). (PMID: 3026281610.1038/s41588-018-0221-x)
Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014). (PMID: 24402279396459310.1038/nature12826)
Krefting, J., Andrade-Navarro, M. A. & Ibn-Salem, J. Evolutionary stability of topologically associating domains is associated with conserved gene regulation. BMC Biol. 16, 87 (2018). (PMID: 30086749609119810.1186/s12915-018-0556-x)
Schenkelaars, Q., Fierro-Constain, L., Renard, E. & Borchiellini, C. Retracing the path of planar cell polarity. BMC Evol. Biol. 16, 69 (2016). (PMID: 27039172481892010.1186/s12862-016-0641-0)
Maxwell, E. E., Fröbisch, N. B. & Heppleston, A. C. Variability and conservation in late chondrichthyan development: ontogeny of the winter skate (Leucoraja ocellata). Anat. Rec. 291, 1079–1087 (2008). (PMID: 10.1002/ar.20719)
Carrier, J. C., Musick, J. A. & Heithaus, M. R. Biology of Sharks and Their Relatives 2nd edn (CRC Press, 2012).
Kvon, E. Z. et al. Progressive loss of function in a limb enhancer during snake evolution. Cell 167, 633–642 (2016). (PMID: 27768887548452410.1016/j.cell.2016.09.028)
Leal, F. & Cohn, M. J. Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers. Curr. Biol. 26, 2966–2973 (2016). (PMID: 2777356910.1016/j.cub.2016.09.020)
Lopez-Rios, J. et al. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature 511, 46–51 (2014). (PMID: 2499074310.1038/nature13289)
Enny, A., Flaherty, K., Mori, S., Turner, N. & Nakamura, T. Developmental constraints on fin diversity. Dev. Growth Differ. 62, 311–325 (2020). (PMID: 32396685738399310.1111/dgd.12670)
Gehrke, A. R. et al. Deep conservation of wrist and digit enhancers in fish. Proc. Natl Acad. Sci. USA 112, 803–808 (2015). (PMID: 2553536510.1073/pnas.1420208112)
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020). (PMID: 32188846708079110.1038/s41467-020-14998-3)
Ye, C., Hill, C. M., Wu, S., Ruan, J. & Ma, Z. S. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016). (PMID: 27573208500413410.1038/srep31900)
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). (PMID: 29750242613799610.1093/bioinformatics/bty191)
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). (PMID: 2605971710.1093/bioinformatics/btv351)
Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 19, 460 (2018). (PMID: 10.1186/s12859-018-2485-7)
Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016). (PMID: 26848124477201610.1101/gr.193474.115)
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017). (PMID: 28336562563582010.1126/science.aal3327)
Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018). (PMID: 30143029610925910.1186/s13059-018-1486-1)
English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012). (PMID: 23185243350405010.1371/journal.pone.0047768)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015). (PMID: 25690850464383510.1038/nbt.3122)
Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M. & Iyer, M. K. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14, 68–70 (2017). (PMID: 2786981510.1038/nmeth.4078)
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). (PMID: 21572440357171210.1038/nbt.1883)
Wu, T. D., Reeder, J., Lawrence, M., Becker, G. & Brauer, M. J. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol. Biol. 1418, 283–334 (2016). (PMID: 2700802110.1007/978-1-4939-3578-9_15)
Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. Gigascience 7, giy093 (2018). (PMID: 30052957610509110.1093/gigascience/giy093)
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006). (PMID: 16845043153882210.1093/nar/gkl200)
Mapleson, D., Venturini, L., Kaithakottil, G. & Swarbreck, D. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. Gigascience 7, giy131 (2018). (PMID: 30418570630295610.1093/gigascience/giy131)
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 31 (2005). (PMID: 10.1186/1471-2105-6-31)
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008). (PMID: 18190707239524410.1186/gb-2008-9-1-r7)
Roth, A. C. J., Gonnet, G. H. & Dessimoz, C. Algorithm of OMA for large-scale orthology inference. BMC Bioinform. 9, 518 (2008). (PMID: 10.1186/1471-2105-9-518)
Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N. & Rokhsar, D. S. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr. Biol. 29, 312–318 (2019). (PMID: 3063910610.1016/j.cub.2018.11.042)
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011). (PMID: 22039361319763410.1371/journal.pcbi.1002195)
Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002). (PMID: 1213608813575610.1093/nar/gkf436)
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010). (PMID: 20626897301775810.1186/1471-2148-10-210)
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009). (PMID: 1953553610.1093/bioinformatics/btp368)
Benton, M. J., Donoghue, P. C. J. & Asher, R. J. in The Timetree Of Life (ed. Kumar, S. B. H.) 35–86 (Oxford Univ. Press, 2009).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). (PMID: 2903537210.1038/nbt.3988)
Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020). (PMID: 3260288810.1093/molbev/msaa159)
Morel, B., Kozlov, A. M., Stamatakis, A. & Szöllősi, G. J. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763–2774 (2020). (PMID: 32502238831256510.1093/molbev/msaa141)
Belaghzal, H., Dekker, J. & Gibcus, J. H. Hi-C 2.0: an optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 123, 56–65 (2017). (PMID: 28435001552276510.1016/j.ymeth.2017.04.004)
Franke, M. et al. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat. Commun. 12, 5415 (2021). (PMID: 34518536843803610.1038/s41467-021-25604-5)
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). (PMID: 25497547563582410.1016/j.cell.2014.11.021)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016). (PMID: 27467249584646510.1016/j.cels.2016.07.002)
Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020). (PMID: 33334380774537710.1186/s13059-020-02215-9)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015). (PMID: 26030525449896510.1038/nature14450)
Frith, M. C. et al. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 32, 1372–1381 (2004). (PMID: 1498842539028710.1093/nar/gkh299)
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011). (PMID: 21330290306569610.1093/bioinformatics/btr064)
Barrows, T. C. A. profileplyr (Bioconductor, 2019); https://doi.org/10.18129/B9.BIOC.PROFILEPLYR.
Wolff, J., Backofen, R. & Grüning, B. Loop detection using Hi-C data with HiCExplorer. Gigascience 11, giac061 (2022). (PMID: 35809047927073010.1093/gigascience/giac061)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616)
Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016). (PMID: 27643841550117310.1038/nmeth.3999)
Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017). (PMID: 28723903554059810.1371/journal.pcbi.1005665)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221 (2019). (PMID: 31530818674894710.1038/s41467-019-11950-y)
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013). (PMID: 23950696373845810.1371/journal.pcbi.1003118)
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020). (PMID: 3205503110.1038/s41587-020-0439-x)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Alexa, A. & Rahnenfuhrer, J. topGO; https://doi.org/10.18129/B9.BIOC.TOPGO (Bioconductor, 2017).
Fernández-Miñán, A., Bessa, J., Tena, J. J. & Gómez-Skarmeta, J. L. Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell. Biol. 135, 413–430 (2016). (PMID: 2744393810.1016/bs.mcb.2016.02.008)
Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017). (PMID: 2839831110.1038/nbt.3820)
Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012). (PMID: 22722344351466510.1101/gr.139725.112)
Harris, R. S. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsylvania State Univ. (2007).
Hiller, M. et al. Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Res. 41, e151 (2013). (PMID: 23814184375365310.1093/nar/gkt557)
Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl Acad. Sci. USA 100, 11484–11489 (2003). (PMID: 1450091120878410.1073/pnas.1932072100)
Suarez, H. G., Langer, B. E., Ladde, P. & Hiller, M. chainCleaner improves genome alignment specificity and sensitivity. Bioinformatics 33, 1596–1603 (2017). (PMID: 2810844610.1093/bioinformatics/btx024)
Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016). (PMID: 2666151310.1039/C5MB00663E)
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Dahn, R. D., Davis, M. C., Pappano, W. N. & Shubin, N. H. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature 445, 311–314 (2006). (PMID: 1718705610.1038/nature05436)
Olsen, A. M. & Westneat, M. W. StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set‐up. Methods Ecol. Evol. 6, 351–356 (2015). (PMID: 10.1111/2041-210X.12326)
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).
Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. geomorph: geometric morphometric analyses of 2D/3D landmark data. R package version 4.0.1 (2021).
Suster, M. L., Abe, G., Schouw, A. & Kawakami, K. Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6, 1998–2021 (2011). (PMID: 2213412510.1038/nprot.2011.416)
Huerta-Cepas, J., Capella-Gutierrez, S., Pryszcz, L. P., Marcet-Houben, M. & Gabaldon, T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 42, D897–D902 (2014). (PMID: 2427549110.1093/nar/gkt1177)
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 1503414739033710.1093/nar/gkh340)
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005). (PMID: 1566185154834510.1093/nar/gki198)
Lassmann, T. & Sonnhammer, E. L. Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinform. 6, 298 (2005). (PMID: 10.1186/1471-2105-6-298)
Wallace, I. M., O’Sullivan, O., Higgins, D. G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006). (PMID: 16556910141091410.1093/nar/gkl091)
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). (PMID: 19505945271234410.1093/bioinformatics/btp348)
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). (PMID: 2537143010.1093/molbev/msu300)
Wehe, A., Bansal, M. S., Burleigh, J. G. & Eulenstein, O. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24, 1540–1541 (2008). (PMID: 1847450810.1093/bioinformatics/btn230)
Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015). (PMID: 25692984446525110.1038/nprot.2014.114)
Peat, J. R., Ortega-Recalde, O., Kardailsky, O. & Hore, T. A. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Research 6, 526 (2017). (PMID: 28580133543795310.12688/f1000research.11281.1)
Skvortsova, K. et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat. Commun. 10, 3054 (2019). (PMID: 31296860662426510.1038/s41467-019-10895-6)
Chen, H., Smith, A. D. & Chen, T. WALT: fast and accurate read mapping for bisulfite sequencing. Bioinformatics 32, 3507–3509 (2016). (PMID: 27466624518156810.1093/bioinformatics/btw490)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014). (PMID: 24799436408613410.1093/nar/gku365)
معلومات مُعتمدة: R01 DE028599 United States DE NIDCR NIH HHS; R01 HG003143 United States HG NHGRI NIH HHS; R01 HG003988 United States HG NHGRI NIH HHS
المشرفين على المادة: 0 (Homeodomain Proteins)
تواريخ الأحداث: Date Created: 20230412 Date Completed: 20230512 Latest Revision: 20231125
رمز التحديث: 20231126
مُعرف محوري في PubMed: PMC10115646
DOI: 10.1038/s41586-023-05868-1
PMID: 37046085
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-05868-1