دورية أكاديمية

Transition-Metal-Free Upscaling of 2,5-Furandicarboxylic Acid Synthesis and Investigation of the Reaction Mechanism.

التفاصيل البيبلوغرافية
العنوان: Transition-Metal-Free Upscaling of 2,5-Furandicarboxylic Acid Synthesis and Investigation of the Reaction Mechanism.
المؤلفون: Lee TW; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea., Lee WJ; Chemical Research Center, Samyang Corp., Daejeon, 34055, South Korea.; Department of Chemistry, Chungnam National University, Daejeon, 34134, South Korea., Kim YS; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea., Do T; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea., Choi JE; Chemical Research Center, Samyang Corp., Daejeon, 34055, South Korea., Han YK; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea., Oh C; Chemical Research Center, Samyang Corp., Daejeon, 34055, South Korea., Lee CW; Chemical Research Center, Samyang Corp., Daejeon, 34055, South Korea., Yum EK; Department of Chemistry, Chungnam National University, Daejeon, 34134, South Korea., Yang JW; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea.
المصدر: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2023 Jun 27; Vol. 29 (36), pp. e202300903. Date of Electronic Publication: 2023 May 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9513783 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3765 (Electronic) Linking ISSN: 09476539 NLM ISO Abbreviation: Chemistry Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH
مستخلص: An environmentally friendly oxidation system has proposed for the practical and scalable production of value-added 2,5-furandicarboxylic acid from 1 kg of 5-hydroxymethylfurfural. The system is composed of a simple base, oxygen, and a green solvent, thereby providing a sustainable and economical approach to organic synthesis. To gain insight into the mechanism of this oxidation process, NMR spectroscopic analysis and kinetic study are used for the mechanistic investigation of this environmentally friendly oxidation process.
(© 2023 Wiley-VCH GmbH.)
References: .
C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699;.
A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484-489;.
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502;.
R. A. Sheldon, Green Chem. 2014, 16, 950-963;.
J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. Int. Ed. 2007, 46, 7164-7183;.
Angew. Chem. 2007, 119, 7298-7318;.
M. Dierks, Z. Cao, R. Rinaldi, Adv. Inorg. Chem. 2021, 77, 219-238;.
H. B. Kim, P. K. Dutta, D.-H. Lee, S.-J. Han, Energy Adv. 2022, 1, 980-983.
 .
S. Fernando, S. Adhikari, C. Chandrapal, N. Murali, Energy Fuels 2006, 20, 1727-1737;.
J. C. Serrano-Ruiz, R. Luque, A. Sepúlveda-Escribano, Chem. Soc. Rev. 2011, 40, 5266-5281;.
S. K. Maity, Renewable Sustainable Energy Rev. 2015, 43, 1427-1445;.
S. Takkellapati, T. Li, M. A. Gonzalez, Clean Technol. Environ. 2018, 20, 1615-1630;.
R. Rinaldi, F. Schüth, Energy Environ. Sci. 2009, 2, 610-626;.
G. W. Huber, A. Corma, Angew. Chem. Int. Ed. 2007, 46, 7184-7201;.
Angew. Chem. 2007, 119, 7320-7338;.
J. Sanders, E. Scott, R. Weusthuis, H. Mooibroek, Macromol. Biosci. 2007, 7, 105-117;.
Q. Hou, X. Qi, M. Zhen, H. Qian, Y. Nie, C. Bai, S. Zhang, X. Bai, M. Ju, Green Chem. 2021, 23, 119-231;.
J. Hilgert, N. Meine, R, Rinaldi, F. Schüth, Energy Environ. Sci. 2013, 6, 92-96;.
Y. Jiang, Q. Ma, X. Zhang, J. Li, S. Liao, Polym. Chem. 2022, 13, 2538-2544;.
S.-S. Yan, S.-H. Liu, L. Chen, Z.-Y. Bo, K. Jing, T.-Y. Gao, B. Yu, Y. Lan, S.-P. Luo, D.-G. Yu, Chem. 2021, 7, 3099-3113;.
Y. Yang, J.-W. Lee, Chem. Sci. 2019, 10, 3905-3926.
 .
R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597;.
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem. 2011, 13, 754-793;.
T. F. Wang, M. W. Nolte, B. H. Shanks, Green Chem. 2014, 16, 548-572.
T. Werpy, G. Petersen, Top Value Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U. S. D. Energy, 2004.
 .
A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G.-J. M. Gruter, J. F. J. Coelho, A. J. D. Silvestre, Polym. Chem. 2015, 6, 5961-5983;.
G. M. G. Maldonado, R. S. Assary, J. Dumesic, L. A. Curtiss, Energy Environ. Sci. 2012, 5, 6981-6989.
 .
W. Partenheimer, V. V. Grushin, Adv. Synth. Catal. 2001, 343, 102-111;.
B. Saha, S. Dutta, M. Abu-Omar, Catal. Sci. Technol. 2012, 2, 79-81;.
S. Li, K. Su, Z. Li, B. Cheng, Green Chem. 2016, 18, 2122-2128.
 .
R. Kumar, Z. Zhu, C. Chen, W. Cai, J. W.-C. Wong, J. Zhao, ChemSusChem 2022, 15, e202201333;.
D. Neukum, L. Baumgarten, D. Wüst, B. B. Sarma, E. Saraçi, A. Kruse, J.-D. Grunwaldt, ChemSusChem 2022, 15, e202200418;.
X. Zuo, P. Venkitasubramanian, K. J. Martin, B. Subramaniam, ChemSusChem 2022, 15, e202102050;.
C. Wang, H.-J. Bongard, M. Yu, F. Schüth, ChemSusChem 2021, 14, 5199-5206;.
D. K. Mishra, H. J. Lee, J. Kim, H.-S. Lee, J. K. Cho, Y.-W. Suh, Y. Yi, Y. J. Kim, Green Chem. 2017, 19, 1619-1623;.
O. Casanova, S. Iborra, A. Corma, ChemSusChem 2009, 2, 1138-1144;.
X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, Y. Wang, ACS Catal. 2014, 4, 2175-2185;.
S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 2012, 14, 143-147;.
O. R. Schade, K. F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt, Green Chem. 2018, 20, 3530-3541;.
X. Han, L. Geng, Y. Guo, R. Jia, X. Liu, Y. Zhang, Y. Wang, Green Chem. 2015, 18, 1597-1604;.
E. Hayashi, T. Komanoya, K. Kamata, M. Hara, ChemSusChem 2017, 10, 654-658;.
H. A. Rass, N. Essayem, M. Besson, ChemSusChem 2015, 8, 1206-1217;.
Y. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H. Christensen, A. Riisager, ChemSusChem 2009, 2, 672-675;.
C.-T. Chen, C. Van Nguyen, Z.-Y. Wang, Y. Bando, Y. Yamauchi, M. T. S. Bazziz, A. Fatehmulla, W. A. Farooq, T. Yoshikawa, T. Masuda, K. C.-W. Wu, ChemCatChem 2018, 10, 361-365;.
P. V. Rathod, V. H. Jadhav, ACS Sustainable Chem. Eng. 2018, 6, 5766-5771;.
E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, J. Am. Chem. Soc. 2019, 141, 890-900.
 .
M. Bender, K.-S. Choi, ChemSusChem 2022, 15, e202200675;.
H. G. Cha, K.-S. Choi, Nat. Chem. 2015, 7, 328-333;.
M. Guo, X. Lu, J. Xiong, R. Zhang, X. Li, Y. Qiao, N. Ji, Z. Yu, ChemSusChem 2022, 15, e202201074;.
T. Su, D. Zhao, Y. Wang, H. Lü, R. S. Varma, C. Len, ChemSusChem 2021, 14, 266-280;.
G. Grabowski, J. Lewkowski, R. Skowroński, Electrochim. Acta 1991, 36, 1995;.
D. J. Chadderdon, L. Xin, J. Qi, Y. Qiu, P. Krishna, K. L. More, W. Z. Li, Green Chem. 2014, 16, 3778-3786;.
S. Barwe, J. Weidner, S. Cychy, D. M. Morales, S. Dieckhöfer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2018, 57, 11460-11464;.
Angew. Chem. 2018, 130, 11631-11636.
 .
S. Subbiah, S. P. Simeonov, J. M. S. S. Esperança, L. P. N. Rebelo, C. A. M. Afonso, Green Chem. 2013, 15, 2849-2853;.
S. Zhang, L. Zhang, Pol. J. Chem. Technol. 2017, 19, 11-16;.
L. Zhang, X. Luo, Y. Li, J. Energy Chem. 2018, 27, 243-249.
For oxidative dehomologation/or cleavage reactions, see:.
Y. J. Park, J. W. Yang, Green Chem. 2019, 21, 2615-2620;.
T. W. Lee, J. W. Yang, Green Chem. 2018, 20, 3761-3771;.
S. M. Kim, H. Y. Shin, D. W. Kim, J. W. Yang, ChemSusChem 2016, 9, 241-245;.
S. M. Kim, D. W. Kim, J. W. Yang, Org. Lett. 2014, 16, 2876-2879. For direct oxidation, see:.
S. M. Kim, Y. S. Kim, J. W. Yang, Green Chem. 2012, 14, 2996-2998.
For similar action of metal t-butoxide as either nucleophile or base via chelation, see: H. S. Yang, L. Macha, H.-J. Ha, J. W. Yang, Org. Chem. Front. 2021, 8, 53-60.
F. M. Dean, Adv. Heterocycl. Chem. 1982, 31, 237-344.
 .
H. Zhang, S. Wang, H. Zhang, J. H. Clark, F. Cao, Green Chem. 2021, 23, 1370-1381;.
H. Choudhary, S. Nishimura, K. Ebitani, Appl. Catal. A 2013, 458, 55-62;.
L. A. Badovskaya, V. V. Poskonin, L. V. Povarova, Russ. Chem. Bull. 2017, 66, 593-599;.
L. A. Badovskaya, V. V. Poskonin, Russ. J. Gen. Chem. 2018, 88, 1568-1579;.
L. A. Badovskaya, V. M. Latashko, V. V. Poskonin, E. P. Grunskaya, Z. I. Tyukhteneva, S. G. Rudakova, S. A. Pestunova, A. V. Sarkiisyan, Chem. Heterocycl. Compd. 2002, 38, 1040-1048;.
N. Araji, D. D. Madjinza, G. Chatel, A. Moores, F. Jérome, K. De Oliveira Vigier, Green Chem. 2017, 19, 98-101.
معلومات مُعتمدة: 2022R1F1A1071069 National Research Foundation of Korea; 2022R1A6C101A751 Ministry of Education, Korea
فهرسة مساهمة: Keywords: FDCA; biomass; sustainability; transition-metal-free; upgrading process
تواريخ الأحداث: Date Created: 20230415 Date Completed: 20230629 Latest Revision: 20230629
رمز التحديث: 20240628
DOI: 10.1002/chem.202300903
PMID: 37060216
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3765
DOI:10.1002/chem.202300903