دورية أكاديمية

Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis.

التفاصيل البيبلوغرافية
العنوان: Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis.
المؤلفون: Hagstrum JT; US Geological Survey, 350 North Akron Road, Moffett Field, CA, 94035, USA. jhag@usgs.gov.
المصدر: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology [J Comp Physiol A Neuroethol Sens Neural Behav Physiol] 2024 Mar; Vol. 210 (2), pp. 295-313. Date of Electronic Publication: 2023 Apr 18.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101141792 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1351 (Electronic) Linking ISSN: 03407594 NLM ISO Abbreviation: J Comp Physiol A Neuroethol Sens Neural Behav Physiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, c2001-
مواضيع طبية MeSH: Cues* , Glia Maturation Factor*, Humans ; Animals ; Orientation/physiology ; Birds/physiology ; Magnetic Fields ; Magnetics ; Animal Migration
مستخلص: The geomagnetic field (GMF) is a worldwide source of compass cues used by animals and humans alike. The inclination of GMF flux lines also provides information on geomagnetic latitude. A long-disputed question, however, is whether horizontal gradients in GMF intensity, in combination with changes in inclination, provide bicoordinate "map" information. Multiple sources contribute to the total GMF, the largest of which is the core field. The ubiquitous crustal field is much less intense, but in both land and marine settings is strong enough at low altitudes (< 700 m; sea level) to mask the core field's weak N-S intensity gradient (~ 3-5 nT/km) over 10 s to 100 s of km. Non-orthogonal geomagnetic gradients, the lack of consistent E-W gradients, and the local masking of core-field intensity gradients by the crustal field, therefore, are grounds for rejection of the bicoordinate geomagnetic "map" hypothesis. In addition, the alternative infrasound direction-finding hypothesis is briefly reviewed. The GMF's diurnal variation has long been suggested as a possible Zeitgeber (timekeeper) for circadian rhythms and could explain the GMF's non-compass role in the avian navigational system. Requirements for detection of this weaker diurnal signal (~ 20-50 nT) might explain the magnetic alignment of resting and grazing animals.
(© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Batschelet E (1981) Circular statistics in biology. Academic Press, London.
Beason RC, Wiltschko W (2015) Cues indicating location in pigeon navigation. J Comp Physiol A 201:961–967. (PMID: 10.1007/s00359-015-1027-2)
Bedard AJ Jr (2021) Waterfall low-frequency vibrations and infrasound: implications for avian migration and hazard detection. J Comp Physiol A 207:685–700. (PMID: 10.1007/s00359-021-01510-5)
Bedard AJ Jr, Georges T (2000) Atmospheric infrasound. Phys Today 53:32–37. (PMID: 10.1063/1.883019)
Begall S, Červený J, Neef J, Vojtěch O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. PNAS 105:13451–13455. (PMID: 18725629253321010.1073/pnas.0803650105)
Begall S, Burda H, Červený J, Gerter O, Neef-Weisse J, Němec P (2011) Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J Comp Physiol A 197:1127–1133. (PMID: 10.1007/s00359-011-0674-1)
Begall S, Malkemper EP, Červený J, Němec P, Burda H (2013) Magnetic alignment in mammals and other animals. Mammal Biol 78:10–20. (PMID: 10.1016/j.mambio.2012.05.005)
Begall S, Burda H, Malkemper EP (2014) Magnetoreception in mammals. Advances in the study of behavior, vol 46. Academic Press, pp 45–88.
Benhamou S (1997) On systems of reference involved in spatial memory. Behav Process 40:149–163. (PMID: 10.1016/S0376-6357(97)00775-4)
Benhamou S (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–239. (PMID: 1457565710.1016/S0022-5193(03)00242-X)
Bingman VP (2018) Requiem for a heavyweight—can anything more be learned from homing pigeons about the sensory and spatial-representational basis of avian navigation? J Exp Biol. https://doi.org/10.1242/jeb.163089. (PMID: 10.1242/jeb.16308930348670)
Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17:295–318. (PMID: 10.1080/08927014.2005.9522584)
Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge.
Blakely RJ, Wells RE, Weaver CS (1999) Puget Sound aeromagnetic maps and data. USGS Open-File Report 99-514.
Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379. (PMID: 17067910.1126/science.170679)
Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63. (PMID: 1251195310.1038/nature01226)
Boström JE, Åkesson S, Alerstam T (2012) Where on earth can animals use a geomagnetic bi-coordinate map for navigation? Ecography 35:1039–1047. (PMID: 10.1111/j.1600-0587.2012.07507.x)
Brown FA (1971) Part V, unconventional theories of orientation, panel discussion. In: Adler HE (ed) orientation: sensory basis. Ann NY Acad Sci 188:331–358. (PMID: 10.1111/j.1749-6632.1971.tb13108.x)
Brown FA, Scow KM (1978) Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9:137–145. (PMID: 10.1080/09291017809359632)
Bulte M, Heyers D, Mouritsen H, Bairlein F (2017) Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J Avian Biol 48:75–82. (PMID: 10.1111/jav.01285)
Burda H, Begall S, Červený J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Nat Acad Sci 106:5708–5713. (PMID: 19299504266701910.1073/pnas.0811194106)
Campbell WH (2003) Introduction to geomagnetic fields. Cambridge University Press, Cambridge. (PMID: 10.1017/CBO9781139165136)
Carrubba S, Frilot Ii C, Chesson AL Jr, Marino AA (2007) Evidence of a nonlinear human magnetic sense. Neurosci 144:356–367. (PMID: 10.1016/j.neuroscience.2006.08.068)
Červený J, Burda H, Ježek M, Kušta T, Husinec V, Novakovic P, Hart V, Hartová V, Begall S, Malkemper EP (2017) Magnetic alignment in warthogs Phacochoerus africanus and wild boars Sus scrofa. Mammal Rev 47:1–5. (PMID: 10.1111/mam.12077)
Chapman S, Bartels J (1940) Geomagnetism. Oxford University Press, Oxford.
Chernetsov N, Kishkinev D, Mouritsen H (2008) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190. (PMID: 1824911310.1016/j.cub.2008.01.018)
Chernetsov N, Pakhomov A, Kobylkov D, Kishkinev D, Holland RA, Mouritsen H (2017) Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr Biol 27:2647–2651. (PMID: 2882367710.1016/j.cub.2017.07.024)
Chernetsov N, Pakhomov A, Davydov A, Cellarius F, Mouritsen H (2020) No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLoS One 15:e0232136. (PMID: 32330188718222110.1371/journal.pone.0232136)
Close J (2012) Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc Royal Soc B 279:2081–2090. (PMID: 10.1098/rspb.2012.0324)
Courtillot V, Hulot G, Alexandrescu M, Le Mouel JL, Kirschvink JL (1997) Sensitivity and evolution of sea-turtle magnetoreception: observations, modelling and constraints from geomagnetic secular variation. Terra Nova 9:203–207. (PMID: 10.1111/j.1365-3121.1997.tb00013.x)
Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic field of the earth as additional zeitgeber for endogenous rhythms? Naturwissenschaften 71:567–574. (PMID: 652175610.1007/BF01189180)
Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158. (PMID: 17301015218957410.1098/rspb.2007.3768)
Diego-Rasilla FJ, Pérez-Mellado V, Pérez-Cembranos A (2017) Spontaneous magnetic alignment behaviour in free-living lizards. Sci Nat 104:1–2. (PMID: 10.1007/s00114-017-1439-7)
Dornfeldt K (1996) Pigeon homing in the meteorological and solar-geomagnetic environment. Ethology 102:413–435. (PMID: 10.1111/j.1439-0310.1996.tb01136.x)
Elsner B (1978) Accurate measurement of the initial track (radius 1500 m) of homing pigeons. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg, pp 194–198. (PMID: 10.1007/978-3-662-11147-5_18)
Emlen ST (1975) The stellar-orientation system of a migratory bird. Sci Am 233:102–111. (PMID: 114517110.1038/scientificamerican0875-102)
Engels S, Treiber CD, Salzer MC, Michalik A, Ushakova L, Keays DA, Mouritsen H, Heyers D (2018) Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. J Royal Soc Interface 15:2018–2024. (PMID: 10.1098/rsif.2018.0124)
Fisher JH, Freake MJ, Borland SC, Phillips JB (2001) Evidence for the use of magnetic map information by an amphibian. Anim Behav 62:1–10. (PMID: 10.1006/anbe.2000.1722)
Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refueling. Nature 414:35–36. (PMID: 1168993210.1038/35102115)
Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216:2165–2171. (PMID: 2372079710.1242/jeb.070250)
Ganzhorn JU, Paffrath D (1995) Patterns in air pollution as model for the physical basis for olfactory navigation in pigeon homing. J Ornithol 136:159–165. (PMID: 10.1007/BF01651237)
Gilder SA, Wack M, Kaub L, Roud SC, Petersen N, Heinsen H, Hillenbrand P, Milz S, Schmitz C (2018) Distribution of magnetic remanence carriers in the human brain. Sci Rep 8:11363. https://doi.org/10.1038/s41598-018-29766-z. (PMID: 10.1038/s41598-018-29766-z300545306063936)
Gill RE, Douglas DC, Handel CM, Tibbitts TL, Hufford G, Piersma T (2014) Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific. Animal Behav 90:117–130. (PMID: 10.1016/j.anbehav.2014.01.020)
Gould JL (1980) The case for magnetic sensitivity in birds and bees (such as it is). Amer Sci 68:256–267.
Gould JL (1982) The map sense of pigeons. Nature 296:205–211. (PMID: 10.1038/296205a0)
Gould JL (1984) Magnetic field sensitivity in animals. Ann Rev Physiol 46:585–598. (PMID: 10.1146/annurev.ph.46.030184.003101)
Gould JL (1985) Are animal maps magnetic? In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, pp 257–268. (PMID: 10.1007/978-1-4613-0313-8_12)
Gould JL (2008) Animal navigation: the longitude problem. Curr Biol 18:R214–R216. (PMID: 1833419810.1016/j.cub.2008.01.011)
Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028. (PMID: 1774363510.1126/science.201.4360.1026)
Griffin DR (1952) Bird navigation. Biol Rev 27:359–390. (PMID: 10.1111/j.1469-185X.1952.tb01509.x)
Griffin DR (1969) The physiology and geophysics of bird navigation. Quart Rev Biol 44:255–276. (PMID: 10.1086/406142)
Gronau J, Schmidt-Koenig K (1970) Annual fluctuation in pigeon homing. Nature 226:87–88. (PMID: 543437310.1038/226087b0)
Hagstrum JT (2000) Infrasound and the avian navigational map. J Exp Biol 203:1103–1111. (PMID: 1070863110.1242/jeb.203.7.1103)
Hagstrum JT (2013) Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic ‘map’ cues. J Exp Biol 216:687–699. (PMID: 2336457310.1242/jeb.072934)
Hagstrum JT (2019) A reinterpretation of “Homing pigeons’ flight over and under low stratus” based on atmospheric propagation modeling of infrasonic navigational cues. J Comp Physiol A 205:67–78. (PMID: 10.1007/s00359-018-1304-y)
Hagstrum JT, Manley GA (2015) Releases of surgically deafened homing pigeons indicate that aural cues play a significant role in their navigational system. J Comp Physiol A 201:983–1001. (PMID: 10.1007/s00359-015-1026-3)
Hagstrum JT, McIsaac HP, Drob DP (2016) Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance. J Comp Physiol A 202:413–424. (PMID: 10.1007/s00359-016-1087-y)
Hart V, Kušta T, Němec P, Bláhová V, Ježek M, Nováková P, Begall S, Červený J, Hanzal V, Malkemper EP, Štípek K (2012) Magnetic alignment in carps: evidence from the Czech Christmas fish market. PLoS One 7:e51100. (PMID: 23227241351549410.1371/journal.pone.0051100)
Heffner HE, Koay G, Hill EM, Heffner RS (2013) Conditioned suppression/avoidance as a procedure for testing hearing in birds: the domestic pigeon (Columba livia). Behav Res 45:383–392. (PMID: 10.3758/s13428-012-0269-y)
Heyers D, Elbers D, Bulte M, Bairlein F, Mouritsen H (2017) The magnetic map sense and its use in fine-tuning migration programme of birds. J Comp Physiol A 203:491–477. (PMID: 10.1007/s00359-017-1164-x)
Holland RA (2014) True navigation in birds: From quantum physics to global migration. J Zool (London) 293:1–15. (PMID: 10.1111/jzo.12107)
Hore PJ, Mouritsen H (2016) The radical-pair mechanism of magnetoreception. Ann Rev Biophys 45:299–344. (PMID: 10.1146/annurev-biophys-032116-094545)
Hoyle F (1993) The origin of the universe and the origin of religion. Anshen Transdisciplinary Lectureships in Art, Science and the Philosophy of Culture, Monograph Two, The Frick Collection, New York.
Jones RM, Riley JP, Georges TM (1986) HARPA: a versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain. NOAA, Boulder.
Keeton WT (1969) Orientation by pigeons: is the sun necessary? Science 165:922–928. (PMID: 1777700710.1126/science.165.3896.922)
Keeton WT (1973) Release-site bias as a possible guide to the “map” component in pigeon homing. J Comp Physiol 86:1–16. (PMID: 10.1007/BF00694473)
Keeton WT (1974) The orientation and navigational basis of homing in birds. Advan Study Behav 5:47–132. (PMID: 10.1016/S0065-3454(08)60020-0)
Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations of the Earth’s magnetic field influence pigeon orientation. J Comp Physiol 95:95–103. (PMID: 10.1007/BF00610108)
Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behavior of pigeons. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 120–128. (PMID: 10.1007/978-3-642-68616-0_12)
Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201. (PMID: 721394810.1016/0303-2647(81)90060-5)
Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. PNAS 89:7683–7687. (PMID: 15021844977510.1073/pnas.89.16.7683)
Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467. (PMID: 1150239310.1016/S0959-4388(00)00235-X)
Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824. (PMID: 2643933310.1016/j.cub.2015.08.012)
Kishkinev D, Heyers D, Woodworth BK, Mitchell GW, Hobson KA, Norris DR (2016) Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study. Sci Rep 6:37326. (PMID: 27876843512033010.1038/srep37326)
Kishkinev D, Packmor F, Zechmeister T, Winkler HC, Chernetsov N, Mouritsen H, Holland RA (2021) Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr Biol 31:1563–1569. (PMID: 3358107210.1016/j.cub.2021.01.051)
Kono M (ed) (2009) vol 5. Elsevier, Amsterdam.
Kramer G (1952) Experiments on bird orientation. Ibis 94:265–285. (PMID: 10.1111/j.1474-919X.1952.tb01817.x)
Kramer G (1957) Experiments on bird orientation and their interpretation. Ibis 99:196–227. (PMID: 10.1111/j.1474-919X.1957.tb01947.x)
Kreithen ML (1978) Sensory mechanisms for animal orientation—can any new ones be discovered? In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg, pp 25–34. (PMID: 10.1007/978-3-662-11147-5_2)
Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol 129:1–4. (PMID: 10.1007/BF00679906)
Krylov VV (2017) Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics 38:497–510. (PMID: 2863677710.1002/bem.22062)
Lednor AJ (1982) Magnetic navigation in pigeons: possibilities and problems. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 109–119. (PMID: 10.1007/978-3-642-68616-0_11)
Lindauer M (1976) Orientierung der Tiere. Verh Dtsch Zool Ges 1976:156–183.
Lindauer M, Martin H (1972) Magnetic effect on dancing bees. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. NASA SP-262, Washington, pp 559–567.
Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J Exp Biol 194:23–32. (PMID: 931726710.1242/jeb.194.1.23)
Lohmann KJ, Lohmann CMF (1996) Detection of magnetic field intensity by sea turtles. Nature 380:59–61. (PMID: 10.1038/380059a0)
Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910. (PMID: 1511871610.1038/428909a)
Lohmann KJ, Lohmann CMF, Putman NF (2007) Magnetic maps in animals: nature’s GPS. J Exp Biol 210:3697–3705. (PMID: 1795141010.1242/jeb.001313)
Lohmann KJ, Putman NF, Lohmann CMF (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. (PMID: 2213756610.1016/j.conb.2011.11.005)
Lohmann KJ, Goforth KM, Mackiewicz AG, Lim DS, Lohmann CM (2022) Magnetic maps in animal navigation. J Comp Physiol A 9:1–27.
Martin H, Lindauer M (1977) Der Einfluss der Erdmagnetfelds und die Schwerorientierung der Honigbiene. J Comp Physiol 122:145–187. (PMID: 10.1007/BF00611888)
Mazzotti M, Naci L, Gagliardo A (1999) Homeward orientation of pigeons confined in a circular arena. Behav Process 46:217–225. (PMID: 10.1016/S0376-6357(99)00044-3)
Moore FR (1977) Geomagnetic disturbance and the orientation of nocturnally migrating birds. Science 196:682–684. (PMID: 85474310.1126/science.854743)
Moore BR (1980) Is the homing pigeon’s map geomagnetic? Nature 285:69–70. (PMID: 10.1038/285069a0)
Munro U, Wiltschko R (1995) The role of skylight polarization in the orientation of a day-migrating bird species. J Comp Physiol A 177:357–362. (PMID: 10.1007/BF00192424)
Papi F (1976) The olfactory navigation system of homing pigeons. Verh Dtsch Zool Ges 69:184–205.
Papi F (1989) Pigeons use olfactory cues to navigate. Ethol Ecol Evol 1:219–231. (PMID: 10.1080/08927014.1989.9525511)
Papi F, Keeton WT, Brown AI, Benvenuti S (1978) Do American and Italian pigeons rely on different homing mechanisms? J Comp Physiol 128:303–317. (PMID: 10.1007/BF00657605)
Parkinson WD (1983) Introduction to geomagnetism. Elsevier, New York.
Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319. (PMID: 10.1006/jtbi.1996.0105)
Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interactions with biological systems. In: Stevens RG, Wilson BW, Andrews LE (eds) The melatonin hypothesis: electric power and the risk of breast cancer. Battelle Press, Columbus, pp 111–172.
Phillips JB, Diego-Rasilla FJ (2022) The amphibian magnetic sense(s). J Comp Physiol A 21:1–20.
Phillips JB, Freake MJ, Fischer JH, Borland SC (2002a) Behavioral titration of a magnetic map coordinate. J Comp Physiol A 188:157–160. (PMID: 10.1007/s00359-002-0286-x)
Phillips JB, Borland SC, Freake MJ, Brassart J, Kirschvink JL (2002b) ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 205:3903–3914. (PMID: 1243201210.1242/jeb.205.24.3903)
Putman NF, Verley P, Endres CS, Lohmann KJ (2015) Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J Exp Biol 218:1044–1050. (PMID: 2583313410.1242/jeb.109975)
Quine DB, Kreithen ML (1981) Frequency shift discrimination: can homing pigeons locate infrasounds by Doppler shifts? J Comp Physiol 141:153–155. (PMID: 10.1007/BF01342661)
Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718. (PMID: 10653784130067410.1016/S0006-3495(00)76629-X)
Ruhenstroth-Bauer G, Günther W, Hantschk I, Klages U, Kugler J, Peters J (1993) Influence of the earth’s magnetic field on resting and activated EEG mapping in normal subjects. Int J Neurosci 73:195–201. (PMID: 816905410.3109/00207459308986669)
Schermuly L, Klinke R (1990) Origin of infrasound sensitive neurons in the papilla basilaris of the pigeon: a HRP study. Hear Res 48:69–78. (PMID: 170116910.1016/0378-5955(90)90199-Y)
Schiffner I, Wiltschko R (2009) Point of decision: when do pigeons decide to head home? Naturwissenschaften 96:251–258. (PMID: 1903957010.1007/s00114-008-0476-7)
Schiffner I, Wiltschko R (2013) Development of the navigational system in homing pigeons: increase in complexity of the navigational map. J Exp Biol 216:2675–2681. (PMID: 23580726)
Schiffner I, Fuhrmann P, Wiltschko R (2011) Tracking pigeons in a magnetic anomaly and in magnetically “quiet” terrain. Naturwissenschaften 98:575–581. (PMID: 21691766312873710.1007/s00114-011-0802-3)
Schneider WT, Packmore F, Lindecke O, Holland RA (2023) Sense of doubt: inaccurate and alternate locations of virtual magnetic displacements may give a distorted view of animal magnetoreception ability. Commun Biol 187:1–8.
Schreiber B, Rossi O (1976) Correlation between race arrivals of homing pigeons and solar activities. Bollettino Di Zoologia 43:317–320. (PMID: 10.1080/11250007609430148)
Schreiber B, Rossi O (1978) Correlation between magnetic storms due to solar spots and pigeon homing performance. IEEE Trans Magn 14:961–963. (PMID: 10.1109/TMAG.1978.1059801)
Schulten K, Swenberg CE, Weller A (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z Phys Chem 111:1–5. (PMID: 10.1524/zpch.1978.111.1.001)
Skiles DD (1985) The geomagnetic field: its nature, history, and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism. Plenum Press, New York, pp 43–102. (PMID: 10.1007/978-1-4613-0313-8_3)
Streby HM, Kramer GR, Peterson SM, Lehman JA, Buehler DA, Andersen DE (2015) Tornadic storm avoidance behavior in breeding songbirds. Curr Biol 25:98–102. (PMID: 2553289710.1016/j.cub.2014.10.079)
Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E (2015) International geomagnetic reference field: the 12th generation. Earth Planet Space. https://doi.org/10.1186/s40623-015-0228-9. (PMID: 10.1186/s40623-015-0228-9)
Thorup K, Bisson IA, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. PNAS 104:18115–18119. (PMID: 17986618208430510.1073/pnas.0704734104)
Tonelli BA, Youngflesh C, Tingley MW (2023) Geomagnetic disturbance associated with increased vagrancy in migratory landbirds. Sci Rep 414:1–12.
Viguier C (1882) Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philosophique de la France et de l’Etranger, pp 1–36.
Wagner G (1978) Homing pigeons’ flight over and under low stratus. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 162–170. (PMID: 10.1007/978-3-662-11147-5_15)
Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg, pp 143–151. (PMID: 10.1007/978-3-662-11147-5_13)
Walcott C (1991) Magnetic maps in pigeons. In: Berthold P (ed) Orientation in birds. Birkhäuser Basel, pp 38–51. (PMID: 10.1007/978-3-0348-7208-9_3)
Walcott C (1996) Pigeon homing: observations, experiments and confusions. J Exp Biol 199:21–27. (PMID: 931726210.1242/jeb.199.1.21)
Walcott C, Brown AI (1989) The disorientation of pigeons at Jersey Hill. Orientation and navigation: birds, humans and other animals. Royal Institute of Navigation, Cardiff.
Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029. (PMID: 47272510.1126/science.472725)
Waldvogel JA (1987) Olfactory navigation in homing pigeons: are the current models atmospherically realistic? Auk 104:369–379. (PMID: 10.2307/4087533)
Waldvogel JA (1989) Olfactory orientation by birds. In: Power DM (ed) Current ornithology, vol 6. Plenum Press, New York, pp 269–321. (PMID: 10.1007/978-1-4757-9918-7_6)
Wallraff HG (1999) The magnetic map of homing pigeons: an evergreen phantom. J Theoret Biol 197:265–269. (PMID: 10.1006/jtbi.1998.0874)
Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer-Verlag, Berlin.
Wallraff HG (2013) Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results. Biogeosci 10:6929–6943. (PMID: 10.5194/bg-10-6929-2013)
Wilson DS (1993) Confidence intervals for motion and deformation of the Juan de Fuca Plate. J Geophys Res 98:16053–16071. (PMID: 10.1029/93JB01227)
Wilson DK, Szeto GL, VanAartsen BH, Noble JM (2000) A prototype acoustic battlefield decision aid with interfaces to meteorological data sources and a target database. US Army Res Lab, Comp Info Sci Direct, Adelphi, Maryland ( https://apps.dtic.mil/sti/pdfs/ADA392132.pdf ).
Wiltschko R (1996) The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J Exp Biol 199:113–119. (PMID: 931744210.1242/jeb.199.1.113)
Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin. (PMID: 10.1007/978-3-642-79749-1)
Wiltschko R, Wiltschko W (2001) Clock-shift experiments with homing pigeons: a compromise between solar and magnetic information? Behav Ecol Sociobiol 49:393–400. (PMID: 10.1007/s002650000313)
Wiltschko R, Wiltschko W (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148:61–76. (PMID: 10.1007/s10336-007-0233-2)
Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A 199:89–98. (PMID: 10.1007/s00359-012-0769-3)
Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 4:221–242. (PMID: 25587420426435610.3390/bios4030221)
Wiltschko R, Wiltschko W (2015) Avian navigation: a combination of innate and learned mechanisms. Adv Study Behav 47:229–310. (PMID: 10.1016/bs.asb.2014.12.002)
Wiltschko R, Wiltschko W (2022) The discovery of the use of magnetic navigational information. J Comp Pysiol A 208:9–18. (PMID: 10.1007/s00359-021-01507-0)
Wiltschko R, Kumpfmüller R, Muth R, Wiltschko W (1994) Pigeon homing: the effect of a clock-shift is often smaller than predicted. Behav Ecol Sociobiol 35:63–73. (PMID: 10.1007/BF00167061)
Wiltschko R, Schiffner I, Wiltschko W (2009) A strong magnetic anomaly affects pigeon navigation. J Exp Biol 212:2983–2990. (PMID: 1971768110.1242/jeb.032722)
Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010) The role of the magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:1534–1538. (PMID: 2069159310.1016/j.cub.2010.06.073)
Winklhofer M, Kirschvink JL (2010) A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 7:S273–S289. (PMID: 20086054284399710.1098/rsif.2009.0435.focus)
Wynn J, Padget O, Mouritsen H, Morford J, Jaggers P, Guilford T (2022) Magnetic stop signs signal a European songbird’s arrival at the breeding site after migration. Science 375:446–449. (PMID: 3508497910.1126/science.abj4210)
فهرسة مساهمة: Keywords: Acoustic signals; Animal alignment; Animal orientation; Circadian rhythms; Magnetic intensity
المشرفين على المادة: 0 (Glia Maturation Factor)
تواريخ الأحداث: Date Created: 20230418 Date Completed: 20240405 Latest Revision: 20240405
رمز التحديث: 20240405
DOI: 10.1007/s00359-023-01627-9
PMID: 37071206
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1351
DOI:10.1007/s00359-023-01627-9