دورية أكاديمية

Post-radiation treatment of 3,3'-diselenodipropionic acid augments cell kill by modulating DNA repair and cell migration pathways in A549 cells.

التفاصيل البيبلوغرافية
العنوان: Post-radiation treatment of 3,3'-diselenodipropionic acid augments cell kill by modulating DNA repair and cell migration pathways in A549 cells.
المؤلفون: Gandhi VV; Homi Bhabha National Institute, Mumbai, Maharashtra, India.; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India., Gandhi KA; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India., Goda JS; Homi Bhabha National Institute, Mumbai, Maharashtra, India.; Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India., Kumbhare LB; Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India., Gota V; Homi Bhabha National Institute, Mumbai, Maharashtra, India.; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India., Kunwar A; Homi Bhabha National Institute, Mumbai, Maharashtra, India.; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
المصدر: IUBMB life [IUBMB Life] 2023 Oct; Vol. 75 (10), pp. 811-829. Date of Electronic Publication: 2023 Apr 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for the International Union of Biochemistry and Molecular Biology by Taylor & Francis Country of Publication: England NLM ID: 100888706 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-6551 (Electronic) Linking ISSN: 15216543 NLM ISO Abbreviation: IUBMB Life Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London ; Philadelphia, PA : Published for the International Union of Biochemistry and Molecular Biology by Taylor & Francis, c1999-
مواضيع طبية MeSH: Apoptosis* , Lung Neoplasms*/drug therapy , Lung Neoplasms*/genetics , Lung Neoplasms*/radiotherapy, Mice ; Animals ; Humans ; A549 Cells ; DNA Repair ; Cell Movement ; Cell Line, Tumor
مستخلص: Aim of the present study was to test whether ionizing radiation (IR) treatment along with 3,3'-diselenodipropionic acid (DSePA), a redox active organodiselenide achieved better tumor control by suppressing the growth and migration of lung cancer cells. The results indicated that post-IR (2 Gy) treatment of DSePA (5 μM) led to a significantly higher cell death as compared to that of DSePA and IR treatments separately. Importantly, combinatorial treatment also showed reduction in the proportion of cancer stem cells and the clonogenic survival of A549 cells. The mechanistic studies indicated that combinatorial treatment although exhibited reductive environment (marked by decrease in ROS and increase of GSH/GSSG) at early time points (2-6 h postradiation), slowed DNA repair, inhibited epithelial-mesenchymal transition (EMT)/cell migration and induced significant level of apoptosis. DSePA mediated suppression of ATM/DNAPKs/p53 (DNA damage response signaling) and Akt/G-CSF (EMT) pathways appeared to be the major mechanism responsible for its radio-modulating activity. Finally, the combined treatment of IR (2 Gy × 4) and DSePA (0.1-0.25 mg/kg body weight daily through oral gavage) showed a significantly higher tumor suppression of the A549 xenograft as compared to that of DSePA and IR treatments separately in the mouse model. In conclusion, post-IR treatment of DSePA augmented cell kill by inhibiting DNA repair and cell migration in A549 cells.
(© 2023 International Union of Biochemistry and Molecular Biology.)
References: Kunwar A, Priyadarsini KI, Jain VK. 3,3′-Diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance. Biochim Biophys Acta. 2021;1865:129768.
Gandhi VV, Gandhi KA, Kumbhare LB, et al. 3,3'-Diselenodipropionic acid (DSePA) induces reductive stress in A549 cells triggering p53-independent apoptosis: A novel mechanism for diselenides. Free Radic Biol Med. 2021;175:1-17.
Gandhi KA, Goda JS, Gandhi VV, et al. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Free Radic. Biol Med. 2019;145:8-19.
Cao W, Li X, Zheng S, Zheng W, Wong YS, Chen T. Selenocysteine derivative overcomes TRAIL resistance in melanoma cells: Evidence for ROS-dependent synergism and signaling crosstalk. Oncotarget. 2014;5:7431-7445.
Kunwar A, Jain VK, Priyadarsini KI, Haston CK. A selenocysteine derivative therapy affects radiation-induced pneumonitis in the mouse. Am J Respir Cell Mol Biol. 2013;49:654-661.
Li X, Zhang H, Chan L, Liu C, Chen T. Nutritionally available selenocysteine derivative antagonizes cisplatin-induced toxicity in renal epithelial cells through inhibition of reactive oxygen species-mediated signaling pathways. J Agric Food Chem. 2018;66:5860-5870.
Yang Z, Yang Y, Xiong K, et al. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials. 2015;63:80-92.
Lemjabbar-Alaoui H, Hassan OUI, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta. 2015;1856:189-210.
Cui YH, Suh Y, Lee HJ, et al. Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene. 2015;34:5372-5382.
Xiao L, Mao Y, Tong Z, Zhao Y, Hong H, Wang F. Radiation exposure triggers the malignancy of non-small cell lung cancer cells through the activation of visfatin/snail signaling. Oncol Rep. 2021;45:1153-1161.
Kowanetz M, Wu X, Lee J, et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A. 2010;107:21248-21255.
Mroczko B, Szmitkowski M, Czygier M. Granulocyte colony stimulating factor (G-CSF) in diagnosis and monitoring of non-small-cell lung cancer (NSCLC). Pol Arch Med Wewn. 2000;103:163-168.
Young MRI, Charboneau S, Lozano Y, Djordjevic A, Young ME. Activation of the protein kinase a signal transduction pathway by granulocyte-macrophage colony-stimulating factor or by genetic manipulation reduces cytoskeletal organization in Lewis lung carcinoma variants. Int J Cancer. 1994;56:446-451.
Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1:1458-1461.
Shimoda M, Ota M, Okada Y. Isolation of cancer stem cells by side population method. Methods Mol Biol. 2018;1692:49-59.
Raghuraman M, Verma P, Kunwar A, Phadnis PP, Jain VK, Priyadarsini KI. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage. Metallomics. 2017;9:715-725.
McAvoy T, Nairn AC. Serine/threonine protein phosphatase assays. Curr Protoc Mol Biol. 2010;92, Chapter 18:Unit18.18. https://doi.org/10.1002/0471142727.mb1818s92.
Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184-191.
Jayakumar S, Patwardhan RS, Pal D, et al. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic Biol Med. 2017;113:530-538.
Chaurasia RK, Balakrishnan S, Kunwar A, et al. Cyto-genotoxicity assessment of potential radioprotector, 3,3′-diselenodipropionic acid (DSePA) in Chinese hamster ovary (CHO) cells and human peripheral blood lymphocytes. Mutat Res Genet Toxicol Environ Mutagen. 2014;774:8-16.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C[T]) method. Methods. 2001;25:402-408.
Kim IG, Lee JH, Kim SY, Heo CK, Kim RK, Cho EW. Targeting therapy-resistant lung cancer stem cells via disruption of the AKT/TSPYL5/PTEN positive-feedback loop. Commun. Biol. 2021;4:778.
Chan R, Sethi P, Jyoti A, McGarry R, Upreti M. Investigating the Radioresistant properties of lung cancer stem cells in the context of the tumor microenvironment. Radiat Res. 2016;185:169-181.
Tsai YL, Chang YJ, Chou CY, Cheong ML, Tsai MS. Expression of a Hoechst 33342 efflux phenomenon and common characteristics of pluripotent stem cells in a side population of amniotic fluid cells. Taiwan J Obstet Gynecol. 2010;49:139-144.
Moitra K. Overcoming multidrug resistance in cancer stem cells. Biomed Res. Int. 2015;2015:635745.
Citrin DE, Mitchell JB. Altering the response to radiation: Sensitizers and protectors. Semin Oncol. 2014;41:848-859.
Matsui T, Nuryadi E, Komatsu S, et al. Robustness of clonogenic assays as a biomarker for cancer cell radiosensitivity. Int. J. Mol. Sci. 2019;20(17):4148.
Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429-1437.
Miao L, Holley AK, Zhao Y, Clair WH, Clair DK. Redox-mediated and ionizing-radiation-induced inflammatory mediators in prostate cancer development and treatment. Antioxid Redox Signal. 2014;20:1481-1500.
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60.
Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995;377:552-557.
Boehme KA, Kulikov R, Blattner C. p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc Natl Acad Sci U S A. 2008;105:7785-7790.
Toews ML, Bylund DB. Pharmacologic principles for combination therapy. Proc Am Thorac Soc. 2005;2:282-289.
Levy A, Botticella A, Le Péchoux C, Faivre-Finn C. Thoracic radiotherapy in small cell lung cancer-a narrative review. Transl Lung Cancer Res. 2021;10:2059-2070.
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-induced lung injury (RILI). Front. Oncol. 2019;9:877.
Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31:363-372.
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 2018;293:10512-10523.
Carrier F, Georgel PT, Pourquier P, et al. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol. 1999;19:1673-1685.
Baumann P, West SC. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998;23:247-251.
Yang L, Yang X, Tang Y, et al. Inhibition of DNA-PK activity sensitizes A549 cells to X-ray irradiation by inducing the ATM-dependent DNA damage response. Mol Med Rep. 2018;17:7545-7552.
Gurley KE, Moser R, Gu Y, Hasty P, Kemp CJ. DNA-PK suppresses a p53-independent apoptotic response to DNA damage. EMBO Rep. 2009;10:87-93.
Degenhardt K, Chen G, Lindsten T, White E. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell. 2002;2:193-203.
Yamamori T, Meike S, Nagane M, Yasui H, Inanami O. ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett. 2013;587:3348-3353.
Tian L, Zhao Y, Truong MJ, Lagadec C, Bourette RP. Synuclein gamma expression enhances radiation resistance of breast cancer cells. Oncotarget. 2018;9:27435-27447.
Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: Complexities with thioredoxin reductase. Carcinogenesis. 1999;20:1657-1666.
Blignaut M, Harries S, Lochner A, Huisamen B. ATM activation by oxidative stress. Science. 2010;330:517-521.
Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. Ataxia telangiectasia mutated protein kinase: A potential master puppeteer of oxidative stress-induced metabolic recycling. Oxid Med Cell Longev. 2021;2021:1-12.
Bononi A, Agnoletto C, De Marchi E, et al. Protein kinases and phosphatases in the control of cell fate. Enzyme Res. 2011;2011:329098.
فهرسة مساهمة: Keywords: DNA repair; additive effect; cell migration; lung cancer; organodiselenide; radiotherapy
المشرفين على المادة: 0 (3,3'-diselenodipropionic acid)
تواريخ الأحداث: Date Created: 20230418 Date Completed: 20230914 Latest Revision: 20230914
رمز التحديث: 20231215
DOI: 10.1002/iub.2727
PMID: 37072689
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-6551
DOI:10.1002/iub.2727