دورية أكاديمية

Simulations of active zone structure and function at mammalian NMJs predict that loss of calcium channels alone is not sufficient to replicate LEMS effects.

التفاصيل البيبلوغرافية
العنوان: Simulations of active zone structure and function at mammalian NMJs predict that loss of calcium channels alone is not sufficient to replicate LEMS effects.
المؤلفون: Ginebaugh SP; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States., Badawi Y; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States., Laghaei R; Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States., Mersky G; Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States., Wallace CJ; Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States., Tarr TB; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States., Kaufhold C; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States., Reddel S; Department of Clinical Neurology, Concord Hospital, Sydney, New South Wales, Australia., Meriney SD; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.
المصدر: Journal of neurophysiology [J Neurophysiol] 2023 May 01; Vol. 129 (5), pp. 1259-1277. Date of Electronic Publication: 2023 Apr 19.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: American Physiological Society Country of Publication: United States NLM ID: 0375404 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-1598 (Electronic) Linking ISSN: 00223077 NLM ISO Abbreviation: J Neurophysiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Bethesda Md : American Physiological Society
Original Publication: Washington [etc.]
مواضيع طبية MeSH: Lambert-Eaton Myasthenic Syndrome*/pathology, Animals ; Humans ; Calcium Channels/metabolism ; Neuromuscular Junction/metabolism ; Neurons/metabolism ; Calcium Channels, Q-Type ; Synaptotagmins ; Mammals/metabolism
مستخلص: Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs. NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.
References: PLoS One. 2020 Feb 7;15(2):e0228348. (PMID: 32032373)
Ann Neurol. 1987 Aug;22(2):193-9. (PMID: 3662451)
J Neurochem. 1984 Mar;42(3):658-62. (PMID: 6693894)
Neuroscience. 2010 May 19;167(3):838-49. (PMID: 20188151)
Neuron. 2008 Feb 28;57(4):536-45. (PMID: 18304483)
Br J Pharmacol. 1990 May;100(1):114-8. (PMID: 1973623)
J Neurosci. 2005 Nov 2;25(44):10247-51. (PMID: 16267232)
SIAM J Sci Comput. 2008 Oct 13;30(6):3126. (PMID: 20151023)
J Neurol Sci. 1999 Jul 1;166(2):126-30. (PMID: 10475106)
Muscle Nerve. 2007 Feb;35(2):178-83. (PMID: 17058271)
J Physiol. 2009 Aug 15;587(Pt 16):4029-49. (PMID: 19546165)
Matrix Biol. 2017 Jan;57-58:86-105. (PMID: 27614294)
J Cell Biol. 2000 Sep 4;150(5):1125-36. (PMID: 10974000)
Lancet. 1999 Jan 9;353(9147):117-8. (PMID: 10023900)
J Physiol. 1995 Aug 15;487(1):115-23. (PMID: 7473242)
J Physiol. 1981 Feb;311:307-24. (PMID: 6267255)
Nature. 2004 Dec 2;432(7017):580-7. (PMID: 15577901)
J Neurochem. 2007 Feb;100(4):939-49. (PMID: 17212698)
J Biol Chem. 2021 Jan-Jun;296:100302. (PMID: 33465376)
J Neurol. 2018 Sep;265(9):2114-2119. (PMID: 29987589)
Biophys J. 2013 Jun 18;104(12):2751-63. (PMID: 23790384)
J Biol Chem. 1994 Feb 25;269(8):5735-41. (PMID: 8119912)
JAMA. 2019 Jan 22;321(3):239. (PMID: 30667489)
J Physiol. 1983 Nov;344:335-45. (PMID: 6655585)
J Gen Fam Med. 2017 Apr 13;18(5):282-284. (PMID: 29264043)
J Neurocytol. 1998 Jun;27(5):379-91. (PMID: 9923982)
Nat Neurosci. 2000 Jun;3(6):566-71. (PMID: 10816312)
J Biol Chem. 1998 May 29;273(22):13995-4001. (PMID: 9593749)
J Neuroimmunol. 2001 Feb 1;113(1):153-62. (PMID: 11137587)
Lancet Neurol. 2011 Dec;10(12):1098-107. (PMID: 22094130)
Neuron. 2012 Jul 12;75(1):11-25. (PMID: 22794257)
Crit Care. 2020 Sep 18;24(1):562. (PMID: 32948221)
Neurosci Res. 2000 Mar;36(3):183-91. (PMID: 10683522)
Ann Pharmacother. 2020 Jan;54(1):56-63. (PMID: 31319693)
Nat Struct Mol Biol. 2007 Oct;14(10):890-6. (PMID: 17906638)
J Neurosci. 2013 Jun 19;33(25):10559-67. (PMID: 23785168)
J Neurophysiol. 2015 Jan 1;113(1):71-87. (PMID: 25210157)
Biophys J. 1991 Jun;59(6):1290-307. (PMID: 1873466)
Muscle Nerve. 2018 Apr;57(4):561-568. (PMID: 29280483)
Brain Res. 1992 Dec 25;599(2):324-32. (PMID: 1363289)
Neuron. 2015 Jan 7;85(1):145-158. (PMID: 25533484)
J Biol Chem. 2012 May 11;287(20):16447-53. (PMID: 22447935)
Cell Calcium. 1987 Dec;8(6):437-48. (PMID: 3435913)
J Physiol. 1988 Sep;403:239-66. (PMID: 2855341)
J Clin Neurol. 2012 Dec;8(4):305-7. (PMID: 23323140)
Ann N Y Acad Sci. 1998 May 13;841:625-35. (PMID: 9668306)
Neurology. 2020 Feb 4;94(5):e511-e520. (PMID: 31831596)
Neurol Clin Pract. 2017 Feb;7(1):65-76. (PMID: 28243504)
J Physiol. 2002 Sep 1;543(Pt 2):567-76. (PMID: 12205190)
EMBO J. 2002 Feb 1;21(3):270-80. (PMID: 11823420)
Neurology. 1998 Feb;50(2):470-5. (PMID: 9484374)
J Bioenerg Biomembr. 1998 Aug;30(4):335-45. (PMID: 9758330)
Mol Membr Biol. 2002 Oct-Dec;19(4):293-300. (PMID: 12512776)
Biophys J. 2004 May;86(5):2691-709. (PMID: 15111389)
J Neurosci. 2006 Dec 27;26(52):13493-504. (PMID: 17192432)
Biophys J. 1997 Jul;73(1):532-45. (PMID: 9199815)
Neurology. 2002 Dec 10;59(11):1773-5. (PMID: 12473768)
Trends Neurosci. 2016 Mar;39(3):183-197. (PMID: 26896416)
Neurol Clin. 2018 May;36(2):379-394. (PMID: 29655456)
N Engl J Med. 1995 Jun 1;332(22):1467-74. (PMID: 7739683)
J Neuroimmunol. 2008 Sep 15;201-202:145-52. (PMID: 18653248)
J Comp Neurol. 2009 Apr 10;513(5):457-68. (PMID: 19226520)
Clin Neurophysiol. 2005 May;116(5):1167-71. (PMID: 15826858)
Mol Biol Cell. 2005 Oct;16(10):4755-64. (PMID: 16093350)
J Clin Neuromuscul Dis. 2019 Mar;20(3):111-119. (PMID: 30801481)
J Neurol Neurosurg Psychiatry. 2001 Feb;70(2):212-7. (PMID: 11160470)
Neurology. 2015 Dec 1;85(22):1964-71. (PMID: 26519543)
Ann Neurol. 1994 Jan;35(1):74-80. (PMID: 8285596)
Clin Pharmacol Ther. 2009 Jul;86(1):44-8. (PMID: 19357643)
EMBO J. 2006 May 17;25(10):2039-50. (PMID: 16642042)
J Neurol Neurosurg Psychiatry. 1991 May;54(5):452-3. (PMID: 1650816)
J Comput Neurosci. 2008 Oct;25(2):296-307. (PMID: 18427967)
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5747-52. (PMID: 8650164)
Am J Hum Genet. 2014 Sep 4;95(3):332-9. (PMID: 25192047)
J Neurol. 2017 Nov;264(11):2284-2292. (PMID: 28975404)
Reproduction. 2010 Mar;139(3):623-30. (PMID: 20032211)
Ann N Y Acad Sci. 1998 May 13;841:811-6. (PMID: 9668334)
Br J Pharmacol. 1989 Aug;97(4):1239-45. (PMID: 2571383)
J Neurol Sci. 1995 Nov;133(1-2):95-101. (PMID: 8583238)
J Physiol. 1996 Oct 1;496 ( Pt 1):59-68. (PMID: 8910196)
Biophys J. 2019 Mar 19;116(6):1025-1036. (PMID: 30795874)
J Bioenerg Biomembr. 2003 Dec;35(6):697-718. (PMID: 15000529)
Int J Neurosci. 2017 Jun;127(6):531-538. (PMID: 27356679)
J Neurophysiol. 1998 Sep;80(3):1056-69. (PMID: 9744921)
Pflugers Arch. 1987 Dec;410(6):623-6. (PMID: 2897107)
J Neurosci. 2020 Apr 29;40(18):3504-3516. (PMID: 32265260)
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5):. (PMID: 33468631)
J Neurophysiol. 2010 Feb;103(2):659-66. (PMID: 19939953)
Am J Med Sci. 2000 Apr;319(4):204-8. (PMID: 10768604)
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2819-24. (PMID: 12601156)
Elife. 2014 Dec 09;3:. (PMID: 25487988)
J Cell Biol. 1979 May;81(2):275-300. (PMID: 38256)
J Physiol. 2015 Jan 1;593(1):245-65. (PMID: 25556799)
Nat Med. 2013 Oct;19(10):1227-31. (PMID: 24100992)
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3491-6. (PMID: 12624181)
Ann N Y Acad Sci. 1999 Apr 30;868:144-59. (PMID: 10414292)
Neuroscientist. 2006 Apr;12(2):134-42. (PMID: 16514010)
J Neurophysiol. 2018 Apr 1;119(4):1340-1355. (PMID: 29357458)
Biophys J. 2002 Sep;83(3):1368-73. (PMID: 12202362)
Science. 2007 May 25;316(5828):1205-8. (PMID: 17478680)
Nature. 2016 Jan 7;529(7584):88-91. (PMID: 26738595)
J Neurol Sci. 1997 Mar 20;147(1):35-42. (PMID: 9094058)
Neuron. 2017 May 3;94(3):447-464. (PMID: 28472650)
Drugs Today (Barc). 2020 Oct;56(10):623-641. (PMID: 33185628)
Ann Rehabil Med. 2011 Oct;35(5):658-63. (PMID: 22506188)
Proc Natl Acad Sci U S A. 1983 Dec;80(24):7636-40. (PMID: 6584877)
J Physiol. 2014 Aug 15;592(16):3687-96. (PMID: 25015919)
J Neurosci. 2011 Jan 12;31(2):512-25. (PMID: 21228161)
J Neurosci. 2015 Feb 4;35(5):2083-100. (PMID: 25653365)
فهرسة مساهمة: Keywords: Lambert-Eaton myasthenic syndrome; MCell modeling; active zone; neuromuscular junction
المشرفين على المادة: 0 (Calcium Channels)
0 (Calcium Channels, Q-Type)
134193-27-4 (Synaptotagmins)
تواريخ الأحداث: Date Created: 20230419 Date Completed: 20230519 Latest Revision: 20240502
رمز التحديث: 20240502
مُعرف محوري في PubMed: PMC10202491
DOI: 10.1152/jn.00404.2022
PMID: 37073966
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-1598
DOI:10.1152/jn.00404.2022