دورية أكاديمية

Preprocedural mouthwashes for infection control in dentistry-an update.

التفاصيل البيبلوغرافية
العنوان: Preprocedural mouthwashes for infection control in dentistry-an update.
المؤلفون: Weber J; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.; Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany., Bonn EL; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany., Auer DL; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany., Kirschneck C; Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany., Buchalla W; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany., Scholz KJ; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany., Cieplik F; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. fabian.cieplik@ukr.de.
المصدر: Clinical oral investigations [Clin Oral Investig] 2023 Jun; Vol. 27 (Suppl 1), pp. 33-44. Date of Electronic Publication: 2023 Apr 20.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9707115 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1436-3771 (Electronic) Linking ISSN: 14326981 NLM ISO Abbreviation: Clin Oral Investig
أسماء مطبوعة: Publication: Berlin : Springer-Verlag
Original Publication: Berlin : Springer, c1997-
مواضيع طبية MeSH: COVID-19*/prevention & control , Anti-Infective Agents, Local*/therapeutic use , Oils, Volatile*, Humans ; Mouthwashes/therapeutic use ; Dentists ; SARS-CoV-2 ; Professional Role ; Respiratory Aerosols and Droplets ; Chlorhexidine/therapeutic use ; Bacteria ; Infection Control ; Dentistry ; Cetylpyridinium/therapeutic use
مستخلص: Objectives: Aerosols and splatter are routinely generated in dental practice and can be contaminated by potentially harmful bacteria or viruses such as SARS-CoV-2. Therefore, preprocedural mouthwashes containing antiseptic agents have been proposed as a potential measure for infection control in dental practice. This review article aims to summarize the clinical (and, if insufficient, preclinical) evidence on preprocedural mouthwashes containing antiseptic agents and to draw conclusions for dental practitioners.
Methods: Literature on preprocedural mouthwashes for reduction of bacterial or viral load in dental aerosols was searched and summarized.
Results: Preprocedural mouthwashes, particularly those containing chlorhexidine digluconate (CHX), cetylpyridinium chloride (CPC), or essential oils (EO), can significantly reduce the bacterial load in dental aerosols. With respect to viruses such as HSV-1, there are too little clinical data to draw any clear recommendations. On the other hand, clinical data is consolidating that CPC-containing mouthwashes can temporarily reduce the intraoral viral load and infectivity in SARS-CoV-2 positive individuals. Nevertheless, potential risks and side effects due to regular antiseptic use such as ecological effects or adaptation of bacteria need to be considered.
Conclusions: The use of preprocedural mouthwashes containing antiseptics can be recommended according to currently available data, but further studies are needed, particularly on the effects on other viruses besides SARS-CoV-2. When selecting a specific antiseptic, the biggest data basis currently exists for CHX, CPC, EO, or combinations thereof.
Clinical Relevance: Preprocedural mouthwashes containing antiseptics can serve as part of a bundle of measures for protection of dental personnel despite some remaining ambiguities and in view of potential risks and side effects.
(© 2023. The Author(s).)
References: Zemouri C, de Soet H, Crielaard W, Laheij A (2017) A scoping review on bio-aerosols in healthcare and the dental environment. Plos One 12:0178007. https://doi.org/10.1371/journal.pone.0178007. (PMID: 10.1371/journal.pone.0178007)
Volgenant CMC, de Soet JJ (2018) Cross-transmission in the Dental Office: does this make you ill? Curr Oral Heal Reports 5:221–228. https://doi.org/10.1007/s40496-018-0201-3. (PMID: 10.1007/s40496-018-0201-3)
Harrel SK, Molinari J (2004) Aerosols and splatter in dentistry a brief review of the literature and infection control implications. J Am Dent Assoc 135:429–437. https://doi.org/10.14219/jada.archive.2004.0207. (PMID: 10.14219/jada.archive.2004.0207151278647093851)
GallagherK.C. S, Johnson IG, JE et al (2020) A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19. Bdj Open 6:25. https://doi.org/10.1038/s41405-020-00053-2. (PMID: 10.1038/s41405-020-00053-233251028)
Zemouri C, Volgenant CMC, Buijs MJ et al (2020) Dental aerosols: microbial composition and spatial distribution. J Oral Microbiol 12:1762040. https://doi.org/10.1080/20002297.2020.1762040. (PMID: 10.1080/20002297.2020.1762040325370967269059)
Zemouri C, Awad SF, Volgenant CMC et al (2020) Modeling of the transmission of coronaviruses, measles virus, influenza virus, Mycobacterium tuberculosis, and Legionella pneumophila in dental clinics. J Dent Res 99:1192–1198. https://doi.org/10.1177/0022034520940288. (PMID: 10.1177/002203452094028832614681)
ODonnell MJ, Boyle MA, Russell RJ, Coleman DC, (2011) Management of dental unit waterline biofilms in the 21st century. Future Microbiol 6:1209–1226. https://doi.org/10.2217/fmb.11.104. (PMID: 10.2217/fmb.11.10422004039)
Laheij AMGA, Kistler JO, Belibasakis GN et al (2012) Healthcare-associated viral and bacterial infections in dentistry. J Oral Microbiol 4:17659. https://doi.org/10.3402/jom.v4i0.17659. (PMID: 10.3402/jom.v4i0.17659)
Rautemaa R, Nordberg A, Wuolijoki-Saaristo K, Meurman JH (2006) Bacterial aerosols in dental practice – a potential hospital infection problem? J Hosp Infect 64:76–81. https://doi.org/10.1016/j.jhin.2006.04.011. (PMID: 10.1016/j.jhin.2006.04.011168202497114873)
Petti S, Vitali M (2017) Occupational risk for Legionella infection among dental healthcare workers: meta-analysis in occupational epidemiology. Bmj Open 7:015374. https://doi.org/10.1136/bmjopen-2016-015374. (PMID: 10.1136/bmjopen-2016-015374)
Reinthaler FF, Mascher F, Stunzner D (1988) Serological examinations for antibodies against Legionella species in dental personnel. J Dent Res 67:942–943. https://doi.org/10.1177/00220345880670061001. (PMID: 10.1177/002203458806700610013170906)
Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Env Microbiol Rep 3:286–296. https://doi.org/10.1111/j.1758-2229.2011.00247.x. (PMID: 10.1111/j.1758-2229.2011.00247.x)
Löe H, Schiøtt CR (1970) The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res 5:79–83. https://doi.org/10.1111/j.1600-0765.1970.tb00696.x. (PMID: 10.1111/j.1600-0765.1970.tb00696.x4254172)
Gjermo P (1974) Chlorhexidine in dental practice. J Clin Periodontol 1:143–152. https://doi.org/10.1111/j.1600-051x.1974.tb01250.x. (PMID: 10.1111/j.1600-051x.1974.tb01250.x4217806)
Litsky BY, Mascis JD, Litsky W (1970) Use of an antimicrobial mouthwash to minimize the bacterial aerosol contamination generated by the high-speed drill. Oral Surg Oral Med Oral Pathol 29:25–30. https://doi.org/10.1016/0030-4220(70)90407-x. (PMID: 10.1016/0030-4220(70)90407-x4902663)
Mohammed CI, Manhold JH, Manhold BS (1964) Efficacy of preoperative oral rinsing to reduce air contamination during use of air turbine handpieces. J Am Dent Assoc 69:715–718. https://doi.org/10.14219/jada.archive.1964.0379. (PMID: 10.14219/jada.archive.1964.037914212043)
Mohammed CI, Monserrate V (1970) Preoperative oral rinsing as a means of reducing air contamination during use of air turbine handpieces. Oral Surg Oral Med Oral Pathol 29:291–294. https://doi.org/10.1016/0030-4220(70)90100-3. (PMID: 10.1016/0030-4220(70)90100-34904188)
Peng X, Xu X, Li Y et al (2020) Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 12:9. https://doi.org/10.1038/s41368-020-0075-9. (PMID: 10.1038/s41368-020-0075-9321275177054527)
Izzetti R, Nisi M, Gabriele M, Graziani F (2020) COVID-19 transmission in dental practice: brief review of preventive measures in Italy. J Dent Res 99:1030–1038. https://doi.org/10.1177/0022034520920580. (PMID: 10.1177/002203452092058032302257)
Diegritz C, Manhart J, Bücher K et al (2020) A detailed report on the measures taken in the Department of Conservative Dentistry and Periodontology in Munich at the beginning of the COVID-19 outbreak. Clin Oral Invest 24:2931–2941. https://doi.org/10.1007/s00784-020-03440-z. (PMID: 10.1007/s00784-020-03440-z)
Ather A, Patel B, Ruparel NB et al (2020) Coronavirus disease 19 (COVID-19): implications for clinical dental care. J Endodont 46:584–595. https://doi.org/10.1016/j.joen.2020.03.008. (PMID: 10.1016/j.joen.2020.03.008)
Zimmermann M, Nkenke E (2020) Approaches to the management of patients in oral and maxillofacial surgery during COVID-19 pandemic. J Craniomaxillofac Surg 48:521–526. https://doi.org/10.1016/j.jcms.2020.03.011. (PMID: 10.1016/j.jcms.2020.03.011323034207128256)
Jamal M, Shah M, Almarzooqi SH et al (2021) Overview of transnational recommendations for COVID-19 transmission control in dental care settings. Oral Dis 27:655–664. https://doi.org/10.1111/odi.13431. (PMID: 10.1111/odi.1343132428372)
Carrouel F, Gonçalves LS, Conte MP et al (2021) Antiviral activity of reagents in mouth rinses against SARS-CoV-2. J Dent Res 100:124–132. https://doi.org/10.1177/0022034520967933. (PMID: 10.1177/002203452096793333089717)
Cieplik F, Jakubovics NS (2022) Preprocedural mouthwashes for reduction of SARS-CoV-2 viral load and infectivity. J Dent Res 101:1421–1423. https://doi.org/10.1177/00220345221110444. (PMID: 10.1177/0022034522111044435897159)
Davies GE, Francis J, Martin AR et al (1954) 1:6-di-4′-chlorophenyldiguanidohexane ("Hibitane”*). Laboratory investigation of a new antibacterial agent of high potency. Brit J Pharm Chemoth 9:192–196. https://doi.org/10.1111/j.1476-5381.1954.tb00840.x. (PMID: 10.1111/j.1476-5381.1954.tb00840.x)
Cieplik F, Jakubovics NS, Buchalla W et al (2019) Resistance toward chlorhexidine in oral bacteria – is there cause for concern? Front Microbiol 10:587. https://doi.org/10.3389/fmicb.2019.00587. (PMID: 10.3389/fmicb.2019.00587309678546439480)
Kampf G (2018) Chlorhexidine digluconate. In: Antiseptic stewardship: biocide resistance and clinical implications. Springer Nature, Cham, Switzerland, pp 429–534.
Jones CG (2000) (1997) Chlorhexidine: is it still the gold standard? Periodontol 15:55–62. https://doi.org/10.1111/j.1600-0757.1997.tb00105.x. (PMID: 10.1111/j.1600-0757.1997.tb00105.x)
Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715. https://doi.org/10.1111/j.1365-2672.2005.02664.x. (PMID: 10.1111/j.1365-2672.2005.02664.x16162221)
Quisno R, Foter MJ (1946) Cetyl pyridinium chloride. J Bacteriol 52:111–117. https://doi.org/10.1128/jb.52.1.111-117.1946. (PMID: 10.1128/jb.52.1.111-117.194620994876518145)
Mao X, Auer DL, Buchalla W, et al. (2020) Cetylpyridinium chloride: mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob Agents Chemother 64:. https://doi.org/10.1128/aac.00576-20.
Maris P (1995) Modes of action of disinfectants. Rev Sci Tech Off Int Epiz 14:47–55. https://doi.org/10.20506/rst.14.1.829. (PMID: 10.20506/rst.14.1.829)
Apostolov K (1980) The effects of iodine on the biological activities of myxoviruses. J Hyg 84:381–388. https://doi.org/10.1017/s0022172400026905. (PMID: 10.1017/s002217240002690563002232133914)
McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179. https://doi.org/10.1128/cmr.12.1.147. (PMID: 10.1128/cmr.12.1.147988047988911)
Gershenfeld L (1957) Povidone-iodine as a topical antiseptic. Am J Surg 94:938–939. https://doi.org/10.1016/0002-9610(57)90086-7. (PMID: 10.1016/0002-9610(57)90086-713478818)
Kanagalingam J, Feliciano R, Hah JH et al (2015) Practical use of povidone-iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections. Int J Clin Pract 69:1247–1256. https://doi.org/10.1111/ijcp.12707. (PMID: 10.1111/ijcp.1270726249761)
Gold SI (1983) Early origins of hydrogen peroxide use in oral hygiene: a historical note. J Periodontol 54:247–247. https://doi.org/10.1902/jop.1983.54.4.247. (PMID: 10.1902/jop.1983.54.4.2476343583)
Marshall MV, Cancro LP, Fischman SL (1995) Hydrogen peroxide: a review of its use in dentistry. J Periodontol 66:786–796. https://doi.org/10.1902/jop.1995.66.9.786. (PMID: 10.1902/jop.1995.66.9.7867500245)
Leeuwen MPCV, Slot DE, der Weijden GAV (2011) Essential oils compared to chlorhexidine with respect to plaque and parameters of gingival inflammation: a systematic review. J Periodontol 82:174–194. https://doi.org/10.1902/jop.2010.100266. (PMID: 10.1902/jop.2010.10026621043801)
Adams D, Addy M (1994) Mouthrinses. Adv Dent Res 8:291–301. https://doi.org/10.1177/08959374940080022401. (PMID: 10.1177/089593749400800224017865089)
Vlachojannis C, Chrubasik-Hausmann S, Hellwig E, Al-Ahmad A (2015) A preliminary investigation on the antimicrobial activity of Listerine®, its components, and of mixtures thereof. Phytother Res 29:1590–1594. https://doi.org/10.1002/ptr.5399. (PMID: 10.1002/ptr.539926104602)
Mandel ID (1994) Antimicrobial mouthrinses: overview and update. J Am Dent Assoc 125:2S-10S. https://doi.org/10.1016/s0002-8177(94)14001-x. (PMID: 10.1016/s0002-8177(94)14001-x8064061)
Fine DH (1988) Mouthrinses as adjuncts for plaque and gingivitis management. A status report for the American Journal of Dentistry. Am J Dent 1:259–263. (PMID: 3270561)
Cieplik F, Kara E, Muehler D et al (2019) Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from caries-associated bacteria in vitro. MicrobiologyOpen 8:00695. https://doi.org/10.1002/mbo3.695. (PMID: 10.1002/mbo3.695)
Saad NY, Muller CD, Lobstein A (2013) Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr J 28:269–279. https://doi.org/10.1002/ffj.3165. (PMID: 10.1002/ffj.3165)
Vlachojannis C, Al-Ahmad A, Hellwig E, Chrubasik S (2016) Listerine® products: an update on the efficacy and safety. Phytother Res 30:367–373. https://doi.org/10.1002/ptr.5555. (PMID: 10.1002/ptr.555526931615)
Marui VC, Souto MLS, Rovai ES et al (2019) Efficacy of preprocedural mouthrinses in the reduction of microorganisms in aerosol a systematic review. J Am Dent Assoc 150:1015-1026.e1. https://doi.org/10.1016/j.adaj.2019.06.024. (PMID: 10.1016/j.adaj.2019.06.02431761015)
Koletsi D, Belibasakis GN, Eliades T (2020) Interventions to reduce aerosolized microbes in dental practice: a systematic review with network meta-analysis of randomized controlled trials. J Dent Res 99:1228–1238. https://doi.org/10.1177/0022034520943574. (PMID: 10.1177/002203452094357432660314)
Mohd-Said S, Mohd-Dom TN, Suhaimi N et al (2021) Effectiveness of pre-procedural mouth rinses in reducing aerosol contamination during periodontal prophylaxis: a systematic review. Front Med 8:600769. https://doi.org/10.3389/fmed.2021.600769. (PMID: 10.3389/fmed.2021.600769)
Nagraj SK, Eachempati P, Paisi M, et al. (2022) Preprocedural mouth rinses for preventing transmission of infectious diseases through aerosols in dental healthcare providers. Cochrane Db Syst Rev 2022:CD013826. https://doi.org/10.1002/14651858.cd013826.pub2.
Dawson M, Soro V, Dymock D et al (2016) Microbiological assessment of aerosol generated during debond of fixed orthodontic appliances. Am J Orthod Dentofac 150:831–838. https://doi.org/10.1016/j.ajodo.2016.04.022. (PMID: 10.1016/j.ajodo.2016.04.022)
Reddy S, Prasad MGS, Kaul S et al (2012) Efficacy of 0.2% tempered chlorhexidine as a pre-procedural mouth rinse: a clinical study. J Indian Soc Periodontol 16:213–217. https://doi.org/10.4103/0972-124x.99264. (PMID: 10.4103/0972-124x.99264230555873459501)
König J, Storcks V, Kocher T et al (2002) Anti-plaque effect of tempered 0.2% chlorhexidine rinse: an in vivo study. J Clin Periodontol 29:207–210. https://doi.org/10.1034/j.1600-051x.2002.290304.x. (PMID: 10.1034/j.1600-051x.2002.290304.x11940138)
Fine DH, Furgang D, Korik I et al (1993) Reduction of viable bacteria in dental aerosols by preprocedural rinsing with an antiseptic mouthrinse. Am J Dent 6:219–221. (PMID: 7880461)
Shetty SK, Sharath K, Shenoy S et al (2013) Compare the efficacy of two commercially available mouthrinses in reducing viable bacterial count in dental aerosol produced during ultrasonic scaling when used as a preprocedural rinse. J Contemp Dent Pract 14:848–851. https://doi.org/10.5005/jp-journals-10024-1414. (PMID: 10.5005/jp-journals-10024-141424685786)
Paul B, Baiju RMP, Raseena NB et al (2020) Effect of aloe vera as a preprocedural rinse in reducing aerosol contamination during ultrasonic scaling. J Indian Soc Periodontol 24:37–41. https://doi.org/10.4103/jisp.jisp_188_19. (PMID: 10.4103/jisp.jisp_188_1931983843)
Logothetis DD, Martinez-Welles JM (1995) Reducing bacterial aerosol contamination with a chlorhexidine gluconate pre-rinse. J Am Dent Assoc 126:1634–1639. https://doi.org/10.14219/jada.archive.1995.0111. (PMID: 10.14219/jada.archive.1995.01117499664)
Heider J, Müller LK, Arweiler N, et al. (2021) S1-Leitlinie: “Umgang mit zahnmedizinischen Patienten bei Belastung mit Aerosol-übertragbaren Erregern”.
Cieplik F, Aparicio C, Kreth J, Schmalz G (2022) Development of standard protocols for biofilm-biomaterial interface testing. Jada Found Sci 1:100008. https://doi.org/10.1016/j.jfscie.2022.100008. (PMID: 10.1016/j.jfscie.2022.100008)
Pearson RD, Steigbigel RT, Davis HT, Chapman SW (1980) Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother 18:699–708. https://doi.org/10.1128/aac.18.5.699. (PMID: 10.1128/aac.18.5.6997447427284079)
Taylor PC, Schoenknecht FD, Sherris JC, Linner EC (1983) Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob Agents Chemother 23:142–150. https://doi.org/10.1128/aac.23.1.142. (PMID: 10.1128/aac.23.1.1426830204184632)
dos Fernandez M, S, Guedes MIF, Langa GPJ, et al (2022) Virucidal efficacy of chlorhexidine: a systematic review. Odontology 110:376–392. https://doi.org/10.1007/s10266-021-00660-x. (PMID: 10.1007/s10266-021-00660-x34637092)
Baqui AAMA, Kelley JI, Jabra-Rizk MA et al (2001) In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus type 1. J Clin Periodontol 28:610–616. https://doi.org/10.1034/j.1600-051x.2001.028007610.x. (PMID: 10.1034/j.1600-051x.2001.028007610.x11422581)
Meiller TF, Silva A, Ferreira SM et al (2005) Efficacy of Listerine® antiseptic in reducing viral contamination of saliva. J Clin Periodontol 32:341–346. https://doi.org/10.1111/j.1600-051x.2005.00673.x. (PMID: 10.1111/j.1600-051x.2005.00673.x158110497166778)
O’Donnell VB, Thomas D, Stanton R, et al. (2020) Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function 1:zqaa002. https://doi.org/10.1093/function/zqaa002.
Bernstein D, Schiff G, Echler G et al (1990) In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res 69:874–876. https://doi.org/10.1177/00220345900690030901. (PMID: 10.1177/002203459006900309012109001)
Kawana R, Kitamura T, Nakagomi O et al (1997) Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology 195:29–35. https://doi.org/10.1159/000246027. (PMID: 10.1159/0002460279403252)
Gottsauner MJ, Michaelides I, Schmidt B et al (2020) A prospective clinical pilot study on the effects of a hydrogen peroxide mouthrinse on the intraoral viral load of SARS-CoV-2. Clin Oral Invest 24:1–7. https://doi.org/10.1007/s00784-020-03549-1. (PMID: 10.1007/s00784-020-03549-1)
Meng L, Hua F, Bian Z (2020) Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J Dent Res 99:481–487. https://doi.org/10.1177/0022034520914246. (PMID: 10.1177/002203452091424632162995)
Herrera D, Serrano J, Roldán S, Sanz M (2020) Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin Oral Invest 24:2925–2930. https://doi.org/10.1007/s00784-020-03413-2. (PMID: 10.1007/s00784-020-03413-2)
Meister TL, Brüggemann Y, Todt D et al (2020) Virucidal efficacy of different oral rinses against severe acute respiratory syndrome coronavirus 2. J Infect Dis 222:471. https://doi.org/10.1093/infdis/jiaa471. (PMID: 10.1093/infdis/jiaa471)
Steinhauer K, Meister TL, Todt D et al (2021) Comparison of the in vitro-efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J Hosp Infect 111:180–183. https://doi.org/10.1016/j.jhin.2021.01.031. (PMID: 10.1016/j.jhin.2021.01.031335822017876484)
Bidra AS, Pelletier JS, Westover JB et al (2020) Comparison of in vitro inactivation of SARS CoV-2 with hydrogen peroxide and povidone-iodine oral antiseptic rinses. J Prosthodont 29:599–603. https://doi.org/10.1111/jopr.13220. (PMID: 10.1111/jopr.13220326080977361576)
Meister TL, Gottsauner J-M, Schmidt B et al (2022) Mouthrinses against SARS-CoV-2 – high antiviral effectivity by membrane disruption in vitro translates to mild effects in a randomized placebo-controlled clinical trial. Virus Res 316:198791. https://doi.org/10.1016/j.virusres.2022.198791. (PMID: 10.1016/j.virusres.2022.19879135504446)
Koch-Heier J, Hoffmann H, Schindler M et al (2021) Inactivation of SARS-CoV-2 through treatment with the mouth rinsing solutions ViruProX® and BacterX® Pro. Microorganisms 9:521. https://doi.org/10.3390/microorganisms9030521. (PMID: 10.3390/microorganisms9030521338026038002120)
Muñoz-Basagoiti J, Perez-Zsolt D, León R et al (2021) Mouthwashes with CPC reduce the infectivity of SARS-CoV-2 variants in vitro. J Dent Res 100:1265–1272. https://doi.org/10.1177/00220345211029269. (PMID: 10.1177/0022034521102926934282982)
Chaudhary P, Melkonyan A, Meethil A et al (2021) Estimating salivary carriage of severe acute respiratory syndrome coronavirus 2 in nonsymptomatic people and efficacy of mouthrinse in reducing viral load. J Am Dent Assoc 152:903–908. https://doi.org/10.1016/j.adaj.2021.05.021. (PMID: 10.1016/j.adaj.2021.05.021345610868193024)
Ferrer MD, Barrueco ÁS, Martinez-Beneyto Y et al (2021) Clinical evaluation of antiseptic mouth rinses to reduce salivary load of SARS-CoV-2. Sci Rep 11:24392. https://doi.org/10.1038/s41598-021-03461-y. (PMID: 10.1038/s41598-021-03461-y349378558695582)
Guenezan J, Garcia M, Strasters D et al (2021) Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID-19. Jama Otolaryngology Head Neck Surg 147:400–401. https://doi.org/10.1001/jamaoto.2020.5490. (PMID: 10.1001/jamaoto.2020.5490)
Huang YH, Huang JT (2021) Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J Med Virol 93:4370–4373. https://doi.org/10.1002/jmv.26954. (PMID: 10.1002/jmv.26954337552188251493)
Seneviratne CJ, Balan P, Ko KKK et al (2021) Efficacy of commercial mouth-rinses on SARS-CoV-2 viral load in saliva: randomized control trial in Singapore. Infection 49:305–311. https://doi.org/10.1007/s15010-020-01563-9. (PMID: 10.1007/s15010-020-01563-933315181)
Alemany A, Perez-Zsolt D, Raïch-Regué D et al (2022) Cetylpyridinium chloride mouthwash to reduce shedding of infectious SARS-CoV-2: a double-blind randomized clinical trial. J Dent Res 101:1450–1456. https://doi.org/10.1177/00220345221102310. (PMID: 10.1177/0022034522110231035727681)
Michalakis Y, Sofonea MT, Alizon S, Bravo IG (2021) SARS-CoV-2 viral RNA levels are not “viral load.” Trends Microbiol 29:970–972. https://doi.org/10.1016/j.tim.2021.08.008. (PMID: 10.1016/j.tim.2021.08.008345353738416646)
Barrueco ÁS, Mateos-Moreno MV, Martínez-Beneyto Y et al (2022) Effect of oral antiseptics in reducing SARS-CoV-2 infectivity: evidence from a randomized double-blind clinical trial. Emerg Microbes Infec 11:1833–1842. https://doi.org/10.1080/22221751.2022.2098059. (PMID: 10.1080/22221751.2022.2098059)
Wölfel R, Corman VM, Guggemos W et al (2020) Virological assessment of hospitalized patients with COVID-2019. Nature 581:465–469. https://doi.org/10.1038/s41586-020-2196-x. (PMID: 10.1038/s41586-020-2196-x32235945)
Bullard J, Dust K, Funk D et al (2020) Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis 71:638. https://doi.org/10.1093/cid/ciaa638. (PMID: 10.1093/cid/ciaa638)
He X, Lau EHY, Wu P et al (2020) Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 26:672–675. https://doi.org/10.1038/s41591-020-0869-5. (PMID: 10.1038/s41591-020-0869-532296168)
Tarragó-Gil R, Gil-Mosteo MJ, Aza-Pascual-Salcedo M et al (2022) Randomized clinical trial to assess the impact of oral intervention with cetylpyridinium chloride to reduce salivary SARS-CoV-2 viral load. J Clin Periodontol. https://doi.org/10.1111/jcpe.13746. (PMID: 10.1111/jcpe.13746363458279877833)
Bonn EL, Rohrhofer A, Audebert F-X et al (2023) Efficacy of a mouthwash containing CHX and CPC in SARS-CoV-2 positive patients. J Dent Res. https://doi.org/10.1177/00220345231156415. (PMID: 10.1177/0022034523115641536942423)
Feres M, Figueiredo LC, Faveri M et al (2010) The effectiveness of a preprocedural nouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office. J Am Dent Assoc 141:415–422. https://doi.org/10.14219/jada.archive.2010.0193. (PMID: 10.14219/jada.archive.2010.019320354090)
McCoy LC, Wehler CJ, Rich SE et al (2008) Adverse events associated with chlorhexidine use results from the Department of Veterans Affairs Dental Diabetes Study. J Am Dent Assoc 139:178–183. https://doi.org/10.14219/jada.archive.2008.0134. (PMID: 10.14219/jada.archive.2008.013418245686)
Haps S, Slot D, Berchier C, der Weijden GV (2008) The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: a systematic review. Int J Dent Hyg 6:290–303. https://doi.org/10.1111/j.1601-5037.2008.00344.x. (PMID: 10.1111/j.1601-5037.2008.00344.x19138180)
Below H, Brauer VF, Kramer A (2007) Absorption of iodine after antisepsis by iodophors and consequences to the risk assessment. GMS Krankenhaushyg Interdiszip 2:Doc41.
Bagan JV, Vera-Sempere F, Marzal C et al (2012) Cytological changes in the oral mucosa after use of a mouth rinse with alcohol: a prospective double blind control study. Med Oral Patol Oral Cir Bucal 17:e956–e961. https://doi.org/10.4317/medoral.18843. (PMID: 10.4317/medoral.18843230857123505716)
Argemí RA, Navarro BG, García-Seisdedos PO et al (2020) Mouthwash with alcohol and oral carcinogenesis: systematic review and meta-analysis. J Évid Based Dent Pract 20:101407. https://doi.org/10.1016/j.jebdp.2020.101407. (PMID: 10.1016/j.jebdp.2020.101407)
Ustrell-Borràs M, Traboulsi-Garet B, Gay-Escoda C (2020) Alcohol-based mouthwash as a risk factor of oral cancer: a systematic review. Med Oral Patol Oral Cir Bucal 25:e1–e12. https://doi.org/10.4317/medoral.23085. (PMID: 10.4317/medoral.2308531655832)
Charles CA, Amini P, Gallob J et al (2012) Antiplaque and antigingivitis efficacy of an alcohol-free essential-oil containing mouthrinse: a 2-week clinical trial. Am J Dent 25:195–198. (PMID: 23082381)
Bescos R, Casas-Agustench P, Belfield L et al (2020) Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J Dent Res 99:1113–1113. https://doi.org/10.1177/0022034520932149. (PMID: 10.1177/002203452093214932463715)
Mao X, Hiergeist A, Auer DL et al (2022) Ecological effects of daily antiseptic treatment on microbial composition of saliva-grown microcosm biofilms and selection of resistant phenotypes. Front Microbiol 13:934525. https://doi.org/10.3389/fmicb.2022.934525. (PMID: 10.3389/fmicb.2022.934525358470899280182)
Chatzigiannidou I, Teughels W, de Wiele TV, Boon N (2020) Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. Npj Biofilms Microbiomes 6:13. https://doi.org/10.1038/s41522-020-0124-3. (PMID: 10.1038/s41522-020-0124-3321983477083908)
Brookes ZLS, Belfield LA, Ashworth A et al (2021) Chlorhexidine and oral microbiome. J Dent 113:103768. https://doi.org/10.1016/j.jdent.2021.103768. (PMID: 10.1016/j.jdent.2021.10376834418463)
Brookes ZLS, Bescos R, Belfield LA et al (2020) Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent 103:103497. https://doi.org/10.1016/j.jdent.2020.103497. (PMID: 10.1016/j.jdent.2020.103497330754507567658)
Tribble GD, Angelov N, Weltman R et al (2019) Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front Cell Infect Microbiol 9:39. https://doi.org/10.3389/fcimb.2019.00039. (PMID: 10.3389/fcimb.2019.00039308819246406172)
Bescos R, Ashworth A, Cutler C et al (2020) Effects of Chlorhexidine mouthwash on the oral microbiome. Sci Rep 10:5254. https://doi.org/10.1038/s41598-020-61912-4. (PMID: 10.1038/s41598-020-61912-4322102457093448)
Auer DL, Mao X, Anderson AC et al (2022) Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque. Antibiotics 11:688. https://doi.org/10.3390/antibiotics11050688. (PMID: 10.3390/antibiotics11050688356253329137571)
Schwarz SR, Hirsch S, Hiergeist A et al (2021) Limited antimicrobial efficacy of oral care antiseptics in microcosm biofilms and phenotypic adaptation of bacteria upon repeated exposure. Clin Oral Invest 25:2939–2950. https://doi.org/10.1007/s00784-020-03613-w. (PMID: 10.1007/s00784-020-03613-w)
Verspecht T, Herrero ER, Khodaparast L et al (2019) Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Sci Rep 9:8326. https://doi.org/10.1038/s41598-019-44822-y. (PMID: 10.1038/s41598-019-44822-y311718246554408)
Muehler D, Mao X, Czemmel S et al (2022) Transcriptomic stress response in Streptococcus mutans following treatment with a sublethal concentration of chlorhexidine digluconate. Microorganisms 10:561. https://doi.org/10.3390/microorganisms10030561. (PMID: 10.3390/microorganisms10030561353361368950716)
معلومات مُعتمدة: CI 263/3-1 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: Infection control; Mouth rinse; Mouthwash; SARS-CoV-2
المشرفين على المادة: 0 (Mouthwashes)
0 (Anti-Infective Agents, Local)
R4KO0DY52L (Chlorhexidine)
0 (Oils, Volatile)
CUB7JI0JV3 (Cetylpyridinium)
تواريخ الأحداث: Date Created: 20230420 Date Completed: 20230621 Latest Revision: 20230621
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10116478
DOI: 10.1007/s00784-023-04953-z
PMID: 37079156
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-3771
DOI:10.1007/s00784-023-04953-z