دورية أكاديمية

Combined inhibition of BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance of TP53-mutant acute myeloid leukemia to individual BH3 mimetics.

التفاصيل البيبلوغرافية
العنوان: Combined inhibition of BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance of TP53-mutant acute myeloid leukemia to individual BH3 mimetics.
المؤلفون: Carter BZ; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. bicarter@mdanderson.org., Mak PY; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Tao W; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Ayoub E; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Ostermann LB; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Huang X; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Loghavi S; Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Boettcher S; Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland., Nishida Y; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Ruvolo V; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Hughes PE; Oncology Research, Amgen Inc, Thousand Oaks, CA, USA., Morrow PK; Amgen Inc, Thousand Oaks, CA, USA., Haferlach T; MLL Munich Leukemia Laboratory, Munich, Germany., Kornblau S; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Muftuoglu M; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Andreeff M; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. mandreef@mdanderson.org.
المصدر: Blood cancer journal [Blood Cancer J] 2023 Apr 24; Vol. 13 (1), pp. 57. Date of Electronic Publication: 2023 Apr 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101568469 Publication Model: Electronic Cited Medium: Internet ISSN: 2044-5385 (Electronic) Linking ISSN: 20445385 NLM ISO Abbreviation: Blood Cancer J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group
مواضيع طبية MeSH: Leukemia, Myeloid, Acute*/drug therapy , Leukemia, Myeloid, Acute*/genetics , Leukemia, Myeloid, Acute*/metabolism , Antineoplastic Agents*/therapeutic use, Animals ; Mice ; Myeloid Cell Leukemia Sequence 1 Protein ; bcl-2-Associated X Protein/metabolism ; bcl-2-Associated X Protein/pharmacology ; bcl-2-Associated X Protein/therapeutic use ; Apoptosis ; Cell Line, Tumor ; Proto-Oncogene Proteins c-bcl-2
مستخلص: TP53-mutant acute myeloid leukemia (AML) respond poorly to currently available treatments, including venetoclax-based drug combinations and pose a major therapeutic challenge. Analyses of RNA sequencing and reverse phase protein array datasets revealed significantly lower BAX RNA and protein levels in TP53-mutant compared to TP53-wild-type (WT) AML, a finding confirmed in isogenic CRISPR-generated TP53-knockout and -mutant AML. The response to either BCL-2 (venetoclax) or MCL-1 (AMG176) inhibition was BAX-dependent and much reduced in TP53-mutant compared to TP53-WT cells, while the combination of two BH3 mimetics effectively activated BAX, circumventing survival mechanisms in cells treated with either BH3 mimetic, and synergistically induced cell death in TP53-mutant AML and stem/progenitor cells. The BH3 mimetic-driven stress response and cell death patterns after dual inhibition were largely independent of TP53 status and affected by apoptosis induction. Co-targeting, but not individual targeting of BCL-2 and MCL-1 in mice xenografted with TP53-WT and TP53-R248W Molm13 cells suppressed both TP53-WT and TP53-mutant cell growth and significantly prolonged survival. Our results demonstrate that co-targeting BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance to individual BH3 mimetics in TP53-mutant cells, thus shifting cell fate from survival to death in TP53-deficient and -mutant AML. This concept warrants clinical evaluation.
(© 2023. The Author(s).)
التعليقات: Erratum in: Blood Cancer J. 2023 May 17;13(1):80. (PMID: 37193700)
References: Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19:1405–13. (PMID: 1123048510.1200/JCO.2001.19.5.1405)
Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Fu B, Tang G, et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk Res. 2015;39:348–54. (PMID: 2557328710.1016/j.leukres.2014.12.006)
Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2008;22:240–8. (PMID: 1820004110.1038/sj.leu.2405078)
Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 2012;119:2114–21. (PMID: 2218699610.1182/blood-2011-08-375758)
Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331. (PMID: 26230955452678510.1038/bcj.2015.59)
Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia 2017;31:705–11. (PMID: 2768051510.1038/leu.2016.263)
Kadia TM, Jain P, Ravandi F, Garcia-Manero G, Andreef M, Takahashi K, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer 2016;122:3484–91. (PMID: 2746306510.1002/cncr.30203)
Short NJ, Montalban-Bravo G, Hwang H, Ning J, Franquiz MJ, Kanagal-Shamanna R, et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020;4:5681–9. (PMID: 33211826768690010.1182/bloodadvances.2020003120)
DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17. (PMID: 30361262631842910.1182/blood-2018-08-868752)
DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19:216–28. (PMID: 2933909710.1016/S1470-2045(18)30010-X)
Aldoss I, Yang D, Aribi A, Ali H, Sandhu K, Al Malki MM, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018;103:e404–7. (PMID: 29545346611915510.3324/haematol.2018.188094)
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol. 2010;2:a000919. (PMID: 20516128286952710.1101/cshperspect.a000919)
DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135:791–803. (PMID: 31932844706803210.1182/blood.2019003988)
Kim K, Maiti A, Loghavi S, Pourebrahim R, Kadia TM, Rausch CR, et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021;13:33689.
Stahl M, Menghrajani K, Derkach A, Chan A, Xiao W, Glass J, et al. Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Adv. 2021;5:1552–64. (PMID: 33687434794828210.1182/bloodadvances.2020003734)
Wang YW, Tsai CH, Lin CC, Tien FM, Chen YW, Lin HY, et al. Cytogenetics and mutations could predict outcome in relapsed and refractory acute myeloid leukemia patients receiving BCL-2 inhibitor venetoclax. Ann Hematol. 2020;99:501–11. (PMID: 3196526910.1007/s00277-020-03911-z)
Schimmer R, Kovtonyuk LV, Klemm N, Fullin J, Stolz SM, Mueller J, et al. TP53 mutations confer resistance to hypomethylating agents and BCL-2 inhibition in myeloid neoplasms. Blood Adv. 2022;6:3201–6. (PMID: 35026842919892710.1182/bloodadvances.2021005859)
Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, D’Alessandro A, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9:910–25. (PMID: 31048320660633810.1158/2159-8290.CD-19-0125)
Venugopal S, Shoukier M, Konopleva M, Dinardo CD, Ravandi F, Short NJ, et al. Outcomes in patients with newly diagnosed TP53-mutated acute myeloid leukemia with or without venetoclax-based therapy. Cancer. 2021;127:3541–51. (PMID: 3418259710.1002/cncr.33675)
Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75. (PMID: 2434611610.1158/2159-8290.CD-13-0609)
Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G, Reed JC, et al. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell. 2017;32:748–60. e6. (PMID: 29232553573033810.1016/j.ccell.2017.11.003)
Wang X, Mak PY, Mu H, Tao W, Rao A, Visweswaran R, et al. Combinatorial inhibition of focal adhesion kinase and BCL-2 enhances antileukemia activity of venetoclax in acute myeloid leukemia. Mol Cancer Ther. 2020;19:1636–48. (PMID: 32404407741643610.1158/1535-7163.MCT-19-0841)
Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, Thompson ER, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9:342–53. (PMID: 3051470410.1158/2159-8290.CD-18-1119)
Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8:1582–97. (PMID: 3025409310.1158/2159-8290.CD-18-0387)
Dutta S, Pregartner G, Rücker FG, Heitzer E, Zebisch A, Bullinger L, et al. Functional classification of TP53 mutations in acute myeloid leukemia. Cancers 2020;12:637. (PMID: 32164171713977210.3390/cancers12030637)
Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9:890–909. (PMID: 31048321660634210.1158/2159-8290.CD-19-0117)
Carter BZ, Mak PY, Tao W, Warmoes M, Lorenzi PL, Mak D, et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica. 2020;23:260331.
Carter BZ, Mak PY, Tao W, Zhang Q, Ruvolo V, Kuruvilla VM, et al. Maximal activation of apoptosis signaling by cotargeting antiapoptotic proteins in BH3 mimetic-resistant AML and AML stem cells. Mol Cancer Ther. 2022;21:879–89. (PMID: 35364607916770710.1158/1535-7163.MCT-21-0690)
Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, Anstee NS, et al. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood. 2023;141:634–44. (PMID: 3621988010.1182/blood.2022016090)
Romano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B. Cell line data base: structure and recent improvements towards molecular authentication of human cell lines. Nucleic Acids Res. 2009;37:D925–32. (PMID: 1892710510.1093/nar/gkn730)
Nishida Y, Montoya RH, Morita K, Tanaka T, Wang F, Takahashi K, et al. Clonal expansion of mutant p53 clones by MDM2 inhibition in acute myeloid leukemias. Blood. 2020;136:27–8. (PMID: 10.1182/blood-2020-142794)
Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599–604. (PMID: 31395785732743710.1126/science.aax3649)
Kojima K, Duvvuri S, Ruvolo V, Samaniego F, Younes A, Andreeff M. Decreased sensitivity of 17p-deleted chronic lymphocytic leukemia cells to a small molecule BCL-2 antagonist ABT-737. Cancer. 2012;118:1023–31. (PMID: 2176140110.1002/cncr.26360)
Carter BZ, Mak DH, Schober WD, Dietrich MF, Pinilla C, Vassilev LT, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood. 2008;111:3742–50. (PMID: 18187663227503010.1182/blood-2007-05-091504)
Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62:3603–8. (PMID: 12097260)
Carter BZ, Qiu YH, Zhang N, Coombes KR, Mak DH, Thomas DA, et al. Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood. 2011;117:780–7. (PMID: 21041716303507210.1182/blood-2010-04-280503)
Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, et al. Functional proteomic profiling of AML predicts response and survival. Blood. 2009;113:154–64. (PMID: 18840713295183110.1182/blood-2007-10-119438)
Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5:2512–21. (PMID: 1704109510.1158/1535-7163.MCT-06-0334)
Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8:355ra117. (PMID: 27605552511108610.1126/scitranslmed.aag1180)
Thijssen R, Diepstraten ST, Moujalled D, Chew E, Flensburg C, Shi MX, et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood. 2021;137:2721–35. (PMID: 33824975813854810.1182/blood.2020010167)
Muftuoglu M, Mak PY, Ruvolo V, Nishida Y, Ruvolo PP, Carter BZ, et al. High dimensional interrogation of stress response patterns and cell death modes in AML. Blood. 2020;136:15. (PMID: 10.1182/blood-2020-143371)
Bergamaschi D, Vossenkamper A, Lee WYJ, Wang P, Bochukova E, Warnes G. Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death. Apoptosis 2019;24:453–64. (PMID: 30788651652246410.1007/s10495-019-01528-w)
Muftuoglu M, Li L, Liang S, Mak D, Lin AJ, Fang J, et al. Extended live-cell barcoding approach for multiplexed mass cytometry. Sci Rep. 2021;11:12388. (PMID: 34117319819604010.1038/s41598-021-91816-w)
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. (PMID: 29608179670074410.1038/nbt.4096)
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55. (PMID: 10.1016/0065-2571(84)90007-4)
Blombery P, Lew TE, Dengler MA, Thompson ER, Lin VS, Chen X, et al. Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL. Blood. 2022;139:1198–207. (PMID: 3446951410.1182/blood.2021012775)
Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518:552–5. (PMID: 2548715110.1038/nature13968)
Yan B, Chen Q, Shimada K, Tang M, Li H, Gurumurthy A, et al. Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia. 2019;33:931–44. (PMID: 3029133610.1038/s41375-018-0279-6)
Chen S, Wu JL, Liang Y, Tang YG, Song HX, Wu LL, et al. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell. 2021;39:225–39. (PMID: 3335745410.1016/j.ccell.2020.11.013)
Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371:1. (PMID: 10.1126/science.abc8697)
Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharm Sci. 2022;43:206–20. (PMID: 3484809710.1016/j.tips.2021.11.001)
معلومات مُعتمدة: F32 CA271697 United States CA NCI NIH HHS; P30 CA016672 United States CA NCI NIH HHS
المشرفين على المادة: N54AIC43PW (venetoclax)
0 (Myeloid Cell Leukemia Sequence 1 Protein)
0 (bcl-2-Associated X Protein)
97W7N9T08G (tapotoclax)
0 (Proto-Oncogene Proteins c-bcl-2)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20230423 Date Completed: 20230425 Latest Revision: 20240125
رمز التحديث: 20240125
مُعرف محوري في PubMed: PMC10123065
DOI: 10.1038/s41408-023-00830-w
PMID: 37088806
قاعدة البيانات: MEDLINE
الوصف
تدمد:2044-5385
DOI:10.1038/s41408-023-00830-w