دورية أكاديمية

Eccentric Exercise as a Potent Prescription for Muscle Weakness After Joint Injury.

التفاصيل البيبلوغرافية
العنوان: Eccentric Exercise as a Potent Prescription for Muscle Weakness After Joint Injury.
المؤلفون: Lepley LK; School of Kinesiology, University of Michigan, Ann Arbor, MI., Stoneback L; School of Kinesiology, University of Michigan, Ann Arbor, MI., Macpherson PCD, Butterfield TA
المصدر: Exercise and sport sciences reviews [Exerc Sport Sci Rev] 2023 Jul 01; Vol. 51 (3), pp. 109-116. Date of Electronic Publication: 2023 Apr 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 0375434 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1538-3008 (Electronic) Linking ISSN: 00916331 NLM ISO Abbreviation: Exerc Sport Sci Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: New York, Academic Press.
مواضيع طبية MeSH: Exercise*/physiology , Muscle Contraction*/physiology, Humans ; Muscle Weakness ; Exercise Therapy ; Signal Transduction ; Muscle, Skeletal/physiology
مستخلص: Lengthening contractions (i.e., eccentric contractions) are capable of uniquely triggering the nervous system and signaling pathways to promote tissue health/growth. This mode of exercise may be particularly potent for patients suffering from muscle weakness after joint injury. Here we provide a novel framework for eccentric exercise as a safe, effective mode of exercise prescription for muscle recovery.
(Copyright © 2023 by the American College of Sports Medicine.)
References: Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle atrophy after ACL injury: implications for clinical practice. Sports Health . 2020; 12(6):579–86.
Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health . 2015; 7(3):231–8.
Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin. Sports Med . 2008; 27(3):405–24 vii-ix.
Lie MM, Risberg MA, Storheim K, Engebretsen L, Øiestad BE. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sports Med . 2019; 53(18):1162–7.
Lepley AS, Lepley LK. Mechanisms of arthrogenic muscle inhibition. J. Sport Rehabil . 2022; 31(6):707–16.
Kötter S, Andresen C, Krüger M. Titin: central player of hypertrophic signaling and sarcomeric protein quality control. Biol. Chem . 2014; 395(11):1341–52.
Duchateau J, Enoka RM. Neural control of lengthening contractions. J. Exp. Biol . 2016; 219(Pt 2):197–204.
Gruber M, Linnamo V, Strojnik V, Rantalainen T, Avela J. Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J. Neurophysiol . 2009; 101(4):2030–40.
Goldspink G, Williams P, Simpson H. Gene expression in response to muscle stretch. Clin. Orthop. Relat. Res . 2002; (403 Suppl):S146–52.
Puchner EM, Alexandrovich A, Kho AL, et al. Mechanoenzymatics of titin kinase. Proc. Natl. Acad. Sci. U. S. A . 2008; 105(36):13385–90.
LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J. Orthop. Sports Phys. Ther . 2003; 33(10):557–71.
Lepley LK, Palmieri-Smith R. Effect of eccentric strengthening after anterior cruciate ligament reconstruction on quadriceps strength. J. Sport Rehabil . 2013; 22(2):150–6.
Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee . 2015; 22(3):270–7.
Butterfield TA, Lepley LK. Eccentric contractions: they are not so "odd" anymore. J. Sport Rehabil . 2017; 26(2):117–9.
Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin. Arthritis Rheum . 2010; 40(3):250–66.
Peck BD, Brightwell CR, Johnson DL, Ireland ML, Noehren B, Fry CS. Anterior cruciate ligament tear promotes skeletal muscle myostatin expression, fibrogenic cell expansion, and a decline in muscle quality. Am. J. Sports Med . 2019; 47(6):1385–95.
McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol . 1985; 59(1):119–26.
Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys. J . 1990; 57(2):209–21.
Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J. Appl. Physiol . 1983; 54(1):80–93.
McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am. J. Pathol . 1992; 140(5):1097–109.
Herzog W. The role of titin in eccentric muscle contraction. J. Exp. Biol . 2014; 217(16):2825–33.
Tiidus PM. Skeletal muscle damage and repair: Human Kinetics; 2008.
Lepley LK, Davi SM, Hunt ER, et al. Morphology and anabolic response of skeletal muscles subjected to eccentrically or concentrically biased exercise. J. Athl. Train . 2020; 55(4):336–42.
Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J. Appl. Physiol . 2005; 99(4):1352–8.
Lynn R, Talbot JA, Morgan DL. Differences in rat skeletal muscles after incline and decline running. J. Appl. Physiol . 1998; 85(1):98–104.
Friden J, Sjöström M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int. J. Sports Med . 1983; 4(3):170–6.
Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc. Immunol. Rev . 2005; 11:64–85.
Huxley AF, Niedergerke R. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature . 1954; 173(4412):971–3.
Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature . 1954; 173(4412):973–6.
Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London Series B - Biological Sciences . 1938; 126(843):136–95.
Pinniger GJ, Steele JR, Thorstensson A, Cresswell AG. Tension regulation during lengthening and shortening actions of the human soleus muscle. Eur. J. Appl. Physiol . 2000; 81(5):375–83.
Grabiner MD, Owings TM. EMG differences between concentric and eccentric maximum voluntary contractions are evident prior to movement onset. Exp. Brain Res . 2002; 145(4):505–11.
Duchateau J, Baudry S. Insights into the neural control of eccentric contractions. J. Appl. Physiol . 2014; 116(11):1418–25.
Matthews PB. The human stretch reflex and the motor cortex. Trends. Neurosci . 1991; 14(3):87–91.
Lepley LK, Lepley AS, Onate JA, Grooms DR. Eccentric exercise to enhance neuromuscular control. Sports Health . 2017; 9(4):333–40.
Lepley LK, Grooms DR, Burland JP, et al. Eccentric cross-exercise after anterior cruciate ligament reconstruction: novel case series to enhance neuroplasticity. Phys. Ther. Sport . 2018; 34:55–65.
Noehren B, Andersen A, Hardy P, et al. Cellular and morphological alterations in the vastus lateralis muscle as the result of ACL injury and reconstruction. J. Bone Joint. Surg Am . 2016; 98(18):1541–7.
Fick A. Mechanische Arbeit und Wärmeentwickung bei der Muskeltätigkeit: BoD–Books on Demand; 2013.
Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. Is titin a 'winding filament'? A new twist on muscle contraction. Proc. Biol. Sci . 2012; 279(1730):981–90.
Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. An initial blueprint for myogenic differentiation. Genes. Dev . 2005; 19(5):553–69.
Hornberger TA, Chien S. Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J. Cell. Biochem . 2006; 97(6):1207–16.
Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med. Sci. Sports Exerc . 2006; 38(11):1950–7.
Lange S, Xiang F, Yakovenko A, et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science . 2005; 308(5728):1599–603.
Stahl SW, Puchner EM, Alexandrovich A, Gautel M, Gaub HE. A conditional gating mechanism assures the integrity of the molecular force-sensor titin kinase. Biophys. J . 2011; 101(8):1978–86.
da Rocha AL, Pereira BC, Pauli JR, et al. Downhill running-based overtraining protocol improves hepatic insulin signaling pathway without concomitant decrease of inflammatory proteins. PLoS One . 2015; 10(10):e0140020.
Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol . 2001; 91(2):534–51.
Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, Lastayo PC. Safety, feasibility, and efficacy of negative work exercise via eccentric muscle activity following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys Ther . 2007; 37(1):10–8.
Rodriguez K, Garcia SA, Spino C, et al. Michigan initiative for anterior cruciate ligament rehabilitation (MiACLR): a protocol for a randomized clinical trial. Phys. Ther . 2020; 100(12):2154–64.
Brasileiro JS, Pinto OMSF, Avila MA, Salvini TF. Functional and morphological changes in the quadriceps muscle induced by eccentric training after ACL reconstruction. Rev. Bras. Fis . 2011; 15(4):284–90.
Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci . 2013; 13(1):1–24.
معلومات مُعتمدة: K01 AR071503 United States AR NIAMS NIH HHS
تواريخ الأحداث: Date Created: 20230424 Date Completed: 20230612 Latest Revision: 20240702
رمز التحديث: 20240702
مُعرف محوري في PubMed: PMC10330137
DOI: 10.1249/JES.0000000000000319
PMID: 37093645
قاعدة البيانات: MEDLINE
الوصف
تدمد:1538-3008
DOI:10.1249/JES.0000000000000319