دورية أكاديمية

Feasibility of clinical studies of chemical exchange saturation transfer magnetic resonance imaging of prostate cancer at 7 T.

التفاصيل البيبلوغرافية
العنوان: Feasibility of clinical studies of chemical exchange saturation transfer magnetic resonance imaging of prostate cancer at 7 T.
المؤلفون: Reesink DJ; Department of Oncological Urology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Arteaga de Castro CS; Department of Precision Imaging, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Van der Velden T; Department of Precision Imaging, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Van Vooren J; Department of Radiology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Oost P; Department of Urology, Tergooi Hospital Hilversum, Hilversum, The Netherlands., Jonges TGN; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands., Lam MGEH; Department of Radiology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., de Keizer B; Department of Radiology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Willemse PM; Department of Oncological Urology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Meijer RP; Department of Oncological Urology, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Klomp DWJ; Department of Precision Imaging, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
المصدر: NMR in biomedicine [NMR Biomed] 2023 Oct; Vol. 36 (10), pp. e4958. Date of Electronic Publication: 2023 May 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8915233 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1492 (Electronic) Linking ISSN: 09523480 NLM ISO Abbreviation: NMR Biomed Subsets: MEDLINE
أسماء مطبوعة: Publication: Chichester : Wiley
Original Publication: London : Heyden & Son, 1988-
مواضيع طبية MeSH: Creatine* , Prostatic Neoplasms*/diagnostic imaging, Male ; Humans ; Aged ; Feasibility Studies ; Magnetic Resonance Imaging/methods ; Protons ; Amides/chemistry ; Amines
مستخلص: Chemical exchange saturation transfer (CEST) has been explored for differentiation between tumour and benign tissue in prostate cancer (PCa) patients. With ultrahigh field strengths such as 7-T, the increase of spectral resolution and sensitivity could allow for selective detection of amide proton transfer (APT) at 3.5 ppm and a group of compounds that resonate at 2 ppm (i.e., [poly]amines and/or creatine). The potential of 7-T multipool CEST analysis of the prostate and the detection of PCa was studied in patients with proven localised PCa who were scheduled to undergo robot-assisted radical prostatectomy (RARP). Twelve patients were prospectively included (mean age 68.0 years, mean serum prostate-specific antigen 7.8ng/mL). A total of 24 lesions larger than 2 mm were analysed. Used were 7-T T2-weighted (T2W) imaging and 48 spectral CEST points. Patients received 1.5-T/3-T prostate magnetic resonance imaging and galium-68-prostate-specific membrane antigen-positron emission tomography/computerised tomography to determine the location of the single-slice CEST. Based on the histopathological results after RARP, three regions of interest were drawn on the T2W images from a known malignant zone and benign zone in the central and peripheral zones. These areas were transposed to the CEST data, from which the APT and 2-ppm CEST were calculated. The statistical significance of the CEST between the central zone, the peripheral zone, and tumour was calculated using a Kruskal-Wallis test. The z-spectra showed that APT and even a distinct pool that resonated at 2 ppm were detectable. This study showed a difference trend in the APT levels, but no difference in the 2-ppm levels when tested between the central zone, the peripheral zone, and tumour (H(2) = 4.8, p = 0.093 and H(2) = 0.86, p = 0.651, respectively). Thus, to conclude, we could most likely detect APT and amines and/or creatine levels noninvasively in prostate using the CEST effect. At group level, CEST showed a higher level of APT in the peripheral versus the central zone; however, no differences of APT and 2-ppm levels were observed in tumours.
(© 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.)
References: Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492.
EAU Guidelines. Edn. Presented at the EAU Annual Congress, Amsterdam, 2022. http://uroweb.org/guidelines/compilations-of-all-guidelines/.
Thompson J, Lawrentschuk N, Frydenberg M, Thompson L, Stricker P. The role of magnetic resonance imaging in the diagnosis and management of prostate cancer. BJU Int. 2013;112(2):6-20. doi:10.1111/bju.12381.
Rifkin MD, Zerhouni EA, Gatsonis CA, et al. Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med. 1990;323(10):621-626. doi:10.1056/NEJM199009063231001.
Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging. 2011;33(3):647-654. doi:10.1002/jmri.22480.
Scheenen TWJ, Fütterer J, Weiland E, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol. 2011;46(1):25-33. doi:10.1097/RLI.0b013e3181f54081.
Yu KK, Scheidler J, Hricak H, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213(2):481-488. doi:10.1148/radiology.213.2.r99nv26481.
Kumar R, Nayyar R, Kumar V, et al. Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate cancer in men with serum prostate-specific antigen between 4 and 10 ng/mL: a follow-up study. Urology. 2008;72(4):859-863. doi:10.1016/j.urology.2008.01.014.
Arteaga de Castro CS, Hoogduin HJM, Khlebnikov V, Luijten PR, Klomp DWJ, Zaiss M. Selective amide- and NOE-CEST- MRI in prostate at 7T using a multi-transmit system. ISMRM 24th Annual Meeting Exhibition, Singapore, 2016:4-5.
Ullrich T, Quentin M, Oelers C, et al. Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: a prospective comparison study of image quality. Eur J Radiol. 2017;90:192-197. doi:10.1016/j.ejrad.2017.02.044.
Kuru TH, Roethke MC, Rieker P, et al. Histology core-specific evaluation of the European Society of Urogenital Radiology (ESUR) standardised scoring system of multiparametric magnetic resonance imaging (mpMRI) of the prostate. BJU Int. 2013;112(8):1080-1087. doi:10.1111/bju.12259.
Arteaga de Castro CS, van den Bergen B, Luijten PR, van der Heide UA, van Vulpen M, Klomp DWJ. Improving SNR and B1 transmit field for an endorectal coil in 7 T MRI and MRS of prostate cancer. Magn Reson Med. 2012;68(1):311-318. doi:10.1002/mrm.23200.
Vos EK, Lagemaat MW, Barentsz JO, et al. Image quality and cancer visibility of T2-weighted magnetic resonance imaging of the prostate at 7 Tesla. Eur Radiol. 2014;24(8):1950-1958. doi:10.1007/s00330-014-3234-6.
van den Bergen B, Klomp DWJ, Raaijmakers AJE, et al. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR Biomed. 2011;24(4):358-365. doi:10.1002/nbm.1599.
Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele P-F. Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 2008;59(2):396-409. doi:10.1002/mrm.21476.
Raaijmakers AJE, Ipek O, Klomp DWJ, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med. 2011;66(5):1488-1497. doi:10.1002/mrm.22886.
Mazaheri Y, Vargas HA, Nyman G, Akin O, Hricak H. Image artifacts on prostate diffusion-weighted magnetic resonance imaging: trade-offs at 1.5 Tesla and 3.0 Tesla. Acad Radiol. 2013;20(8):1041-1047. doi:10.1016/j.acra.2013.04.005.
Kobus T, Wright AJ, Weiland E, Heerschap A, Scheenen TWJ. Metabolite ratios in 1H MR spectroscopic imaging of the prostate. Magn Reson Med. 2015;73(1):1-12. doi:10.1002/mrm.25122.
Klomp DWJ, Bitz AK, Heerschap A, Scheenen TWJ. Proton spectroscopic imaging of the human prostate at 7 T. NMR Biomed. 2009;22(5):495-501. doi:10.1002/nbm.1360.
Evans VS, Torrealdea F, Rega M, et al. Optimization and repeatability of multipool chemical exchange saturation transfer MRI of the prostate at 3.0 T. J Magn Reson Imaging. 2019;50(4):1238-1250. doi:10.1002/jmri.26690.
Takayama Y, Nishie A, Sugimoto M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores. MAGMA. 2016;29(4):671-679. doi:10.1007/s10334-016-0537-4.
Buyyounouski MK, Choyke PL, McKenney JK, et al. Prostate cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(3):245-253. doi:10.3322/caac.21391.
Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59(4):477-494. doi:10.1016/j.eururo.2010.12.009.
Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328-354. doi:10.1007/s00259-014-2961-x.
Steensma BR, Luttje M, Voogt IJ, et al. Comparing signal-to-noise ratio for prostate imaging at 7T and 3T. J Magn Reson Imaging. 2019;49(5):1446-1455. doi:10.1002/jmri.26527.
Raaijmakers AJE, Italiaander M, Voogt IJ, et al. The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 2016;75(3):1366-1374. doi:10.1002/mrm.25596.
Meliadò EF, van den Berg CAT, Luijten PR, Raaijmakers AJE. Intersubject specific absorption rate variability analysis through construction of 23 realistic body models for prostate imaging at 7T. Magn Reson Med. 2019;81(3):2106-2119. doi:10.1002/mrm.27518.
Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med. 2007;57(1):192-200. doi:10.1002/mrm.21120.
Egevad L, Delahunt B, Srigley JR, Samaratunga H. International Society of Urological Pathology (ISUP) grading of prostate cancer-an ISUP consensus on contemporary grading. APMIS. 2016;124(6):433-435. doi:10.1111/apm.12533.
Khlebnikov V, van der Kemp WJM, Hoogduin H, Klomp DWJ, Prompers JJ. Analysis of chemical exchange saturation transfer contributions from brain metabolites to the Z-spectra at various field strengths and pH. Sci Rep. 2019;9(1):1-11. doi:10.1038/s41598-018-37295-y.
Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61(6):1441-1450. doi:10.1002/mrm.21873.
Lagemaat MW, Breukels V, Vos EK, et al. 1H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses. Magn Reson Med. 2016;75(3):933-945. doi:10.1002/mrm.25569.
Jiang S, Eberhart CG, Lim M, et al. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging: a validation study with image-guided stereotactic biopsy. Clin Cancer Res. 2019;25(2):552-561. doi:10.1158/1078-0432.CCR-18-1233.
Schmidt C, Hötker AM, Muehlematter UJ, Burger IA, Donati OF, Barth BK. Value of bowel preparation techniques for prostate MRI: a preliminary study. Abdom Radiol. 2021;46(8):4002-4013. doi:10.1007/s00261-021-03046-3.
Khlebnikov V, Windschuh J, Siero JCW, et al. On the transmit field inhomogeneity correction of relaxation-compensated amide and NOE CEST effects at 7 T. NMR Biomed. 2017;30(5):1-10. doi:10.1002/nbm.3687.
Andersen M, Laustsen M, Boer V. Accuracy investigations for volumetric head-motion navigators with and without EPI at 7 T. Magn Reson Med. 2022;88(3):1198-1211. doi:10.1002/mrm.29296.
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med. 2022;1-15(1):177-191. doi:10.1002/mrm.29440.
فهرسة مساهمة: Keywords: 7 T; MRI; diagnostic accuracy; high field; prostate cancer
المشرفين على المادة: MU72812GK0 (Creatine)
0 (Protons)
0 (Amides)
0 (Amines)
تواريخ الأحداث: Date Created: 20230424 Date Completed: 20230915 Latest Revision: 20231003
رمز التحديث: 20231003
DOI: 10.1002/nbm.4958
PMID: 37094995
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1492
DOI:10.1002/nbm.4958