دورية أكاديمية

Nanoparticle drug delivery to target breast cancer brain metastasis: Current and future trends.

التفاصيل البيبلوغرافية
العنوان: Nanoparticle drug delivery to target breast cancer brain metastasis: Current and future trends.
المؤلفون: Kannan S; School of Medicine, University of Central Lancashire, Preston, UK., Cheng VWT; Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
المصدر: International journal of cancer [Int J Cancer] 2023 Sep 15; Vol. 153 (6), pp. 1118-1129. Date of Electronic Publication: 2023 Apr 25.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0042124 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0215 (Electronic) Linking ISSN: 00207136 NLM ISO Abbreviation: Int J Cancer Subsets: MEDLINE
أسماء مطبوعة: Publication: 1995- : New York, NY : Wiley-Liss
Original Publication: 1966-1984 : Genève : International Union Against Cancer
مواضيع طبية MeSH: Breast Neoplasms*/pathology , Brain Neoplasms*/genetics, Humans ; Female ; Tissue Distribution ; Drug Delivery Systems
مستخلص: Breast cancer brain metastasis (BCBM) is rapidly becoming an impediment to continuing survival gains seen in breast cancer patients. Drug delivery across the blood-brain barrier is the main issue hindering systemic therapy against BCBM. This review details recent advances in nanoparticle (NP) drug delivery systems to target BCBM. Their primary benefits are: enhanced circulating and intra-BCBM drug biodistribution, BCBM targeting through NP functionalization, opportunities for gene manipulation and their theragnostic applications. Multiple NPs have been synthesized to deliver therapeutic HER2 blockade, which is particularly important given HER2-positive breast cancer's tendency to form BCBM. Finally, we review the clinical context in which NP-based therapeutics have been investigated in BCBM patients. While a breakthrough in improving patient outcomes remain awaited, these clinical trials represent positive steps in the changing attitude towards BCBM as a treatable illness. Although multiple challenges remain in the clinical translation of BCBM-directed NP therapies, ongoing research in the field offers promising avenues for novel targeting of this devastating disease.
(© 2023 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.)
References: Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi:10.3322/CAAC.21492.
Sacks P, Rahman M. Epidemiology of brain metastases. Neurosurg Clin N Am. 2020;31:481-488. doi:10.1016/J.NEC.2020.06.001.
Aversa C, Rossi V, Geuna E, et al. Metastatic breast cancer subtypes and central nervous system metastases. Breast. 2014;23:623-628. doi:10.1016/J.BREAST.2014.06.009.
Kennecke H, Yerushalmi R, Woods R, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271-3277. doi:10.1200/JCO.2009.25.9820.
Bailleux C, Eberst L, Bachelot T. Treatment strategies for breast cancer brain metastases. Br J Cancer. 2020;124:142-155. doi:10.1038/s41416-020-01175-y.
Kodack DP, Askoxylakis V, Ferraro GB, Fukumura D, Jain RK. Emerging strategies for treating brain metastases from breast cancer. Cancer Cell. 2015;27:163-175. doi:10.1016/J.CCELL.2015.01.001.
Clayton AJ, Danson S, Jolly S, et al. Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. Br J Cancer. 2004;91:639-643. doi:10.1038/SJ.BJC.6601970.
Leyland-Jones B. Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol. 2009;27:5278-5286. doi:10.1200/JCO.2008.19.8481.
Taskar KS, Rudraraju V, Mittapalli RK, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012;29:770-781. doi:10.1007/S11095-011-0601-8.
Gori S, Lunardi G, Inno A, et al. Lapatinib concentration in cerebrospinal fluid in two patients with her2-positive metastatic breast cancer and brain metastases. Ann Oncol. 2014;25:912-913. doi:10.1093/annonc/mdu041.
Venur VA, Leone JP. Targeted therapies for brain metastases from breast cancer. Int J Mol Sci. 2016;17:17. doi:10.3390/IJMS17091543.
Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs. 2007;18:23-28. doi:10.1097/01.CAD.0000236313.50833.EE.
Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87:586-592. doi:10.1038/CLPT.2010.12.
Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med. 2013;54:1869-1875. doi:10.2967/JNUMED.112.118612.
Gampa G, Vaidhyanathan S, Sarkaria JN, Elmquist WF. Drug delivery to melanoma brain metastases: can current challenges lead to new opportunities? Pharmacol Res. 2017;123:10-25. doi:10.1016/J.PHRS.2017.06.008.
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1959-1972. doi:10.1038/JCBFM.2012.126.
Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24:1745-1758. doi:10.1007/S11095-007-9374-5/TABLES/5.
Sharom FJ. The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol. 1997;160:161-175. doi:10.1007/S002329900305.
Tsuji A. P-glycoprotein-mediated efflux transport of anticancer drugs at the blood-brain barrier. Ther Drug Monit. 1998;20:588-590. doi:10.1097/00007691-199810000-00024.
Steeg PS. The blood-tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol. 2021;18:696-714. doi:10.1038/s41571-021-00529-6.
Van Tellingen O, Yetkin-Arik B, De Gooijer MC, Wesseling P, Wurdinger T, De Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1-12. doi:10.1016/J.DRUP.2015.02.002.
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B. 2021;11:2306-2325. doi:10.1016/J.APSB.2020.11.023.
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2019;20:26-41. doi:10.1038/s41568-019-0205-x.
Arvanitis CD, Askoxylakis V, Guo Y, et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc Natl Acad Sci U S A. 2018;115:E8717-E8726. doi:10.1073/PNAS.1807105115/SUPPL_FILE/PNAS.1807105115.SAPP.PDF.
Mohanraj VJ, Chen Y. Nanoparticles - a review. Trop J Pharm Res. 2007;5:561-573. doi:10.4314/tjpr.v5i1.14634.
Salama L, Pastor ER, Stone T, Mousa SA. Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicine. 2020;8:8. doi:10.3390/BIOMEDICINES8090347.
Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017;14:212-227. doi:10.20892/J.ISSN.2095-3941.2017.0054.
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:1-33. doi:10.1186/S12951-018-0392-8.
Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310-1316. doi:10.1158/1078-0432.CCR-07-1441.
He C, Cai P, Li J, et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release. 2017;246:98-109. doi:10.1016/J.JCONREL.2016.12.019.
Mohammad AS, Griffith JI, Adkins CE, et al. Liposomal irinotecan accumulates in metastatic lesions, crosses the blood-tumor barrier (BTB), and prolongs survival in an experimental model of Brain metastases of triple negative breast cancer. Pharm Res. 2018;35:31. doi:10.1007/S11095-017-2278-0.
Orthmann A, Peiker L, Fichtner I, Hoffmann A, Hilger RA, Zeisig R. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J Biomed Nanotechnol. 2016;12:56-68. doi:10.1166/JBN.2016.2143.
Orthmann A, Zeisig R, Süss R, Lorenz D, Lemm M, Fichtner I. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharm Res. 2012;29:1949-1959. doi:10.1007/S11095-012-0723-7/FIGURES/6.
Anders CK, Adamo B, Karginova O, et al. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One. 2013;8:8. doi:10.1371/JOURNAL.PONE.0061359.
Adkins CE, Nounou MI, Hye T, et al. NKTR-102 efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer. 2015;15:15. doi:10.1186/S12885-015-1672-4.
Wyatt EA, Davis ME. Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles. Bioeng Transl Med. 2019;4:30-37. doi:10.1002/BTM2.10108.
Khan NU, Ni J, Ju X, Miao T, Chen H, Han L. Escape from abluminal LRP1-mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. Acta Pharm Sin B. 2021;11:1341-1354. doi:10.1016/J.APSB.2020.10.015.
Guo Q, Zhu Q, Miao T, et al. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release. 2019;303:117-129. doi:10.1016/J.JCONREL.2019.04.031.
Nguyen LN, Ma D, Shui G, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503-506. doi:10.1038/nature13241.
Ben-Zvi A, Lacoste B, Kur E, et al. MSFD2A is critical for the formation and function of the blood brain barrier. Nature. 2014;509:507-511. doi:10.1038/NATURE13324.
Wang Z, Liu CH, Huang S, et al. Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Sci Adv. 2020;6:7457-7485. doi:10.1126/SCIADV.ABA7457/SUPPL_FILE/ABA7457_SM.PDF.
Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-mediated low transcytosis to boost nanoparticle delivery to brain for chemotherapy of brain metastases. Adv Healthc Mater. 2021;10:2001997. doi:10.1002/ADHM.202001997.
Chen H, Zhou M, Zeng Y, et al. Biomimetic lipopolysaccharide-free bacterial outer membrane-functionalized nanoparticles for brain-targeted drug delivery. Adv Sci. 2022;9:2105854. doi:10.1002/ADVS.202105854.
Miao T, Ju X, Zhu Q, et al. Nanoparticles surmounting blood-brain tumor barrier through both transcellular and paracellular pathways to target brain metastases. Adv Funct Mater. 2019;29:1900259. doi:10.1002/ADFM.201900259.
Ni J, Miao T, Su M, et al. PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. J Control Release. 2021;329:934-947. doi:10.1016/J.JCONREL.2020.10.023.
Ju X, Chen H, Miao T, Ni J, Han L. Prodrug delivery using dual-targeting nanoparticles to treat breast cancer brain metastases. Mol Pharm. 2021;18:2694-2702. doi:10.1021/ACS.MOLPHARMACEUT.1C00224.
Zhang T, Lip H, He C, et al. Multitargeted nanoparticles deliver synergistic drugs across the blood-brain barrier to brain metastases of triple negative breast cancer cells and tumor-associated macrophages. Adv Healthc Mater. 2019;8:1900543. doi:10.1002/ADHM.201900543.
You H, Baluszek S, Kaminska B. Supportive roles of brain macrophages in CNS metastases and assessment of new approaches targeting their functions. Theranostics. 2020;10:2949-2964. doi:10.7150/THNO.40783.
Dancy JG, Wadajkar AS, Connolly NP, et al. Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Sci Adv. 2020;6:6. doi:10.1126/SCIADV.AAX3931.
Carney CP, Kapur A, Anastasiadis P, et al. Fn14-directed DART nanoparticles selectively target neoplastic cells in preclinical models of triple-negative breast cancer brain metastasis. Mol Pharm. 2022;20:314-330. doi:10.1021/ACS.MOLPHARMACEUT.2C00663/SUPPL_FILE/MP2C00663_SI_001.PDF.
Wadajkar AS, Dancy JG, Roberts NB, et al. Decreased non-specific Adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release. 2017;267:144-153. doi:10.1016/J.JCONREL.2017.09.006.
Wan X, Zheng X, Pang X, et al. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget. 2016;7:34038-34051. doi:10.18632/ONCOTARGET.8697.
Patil R, Ljubimov AV, Gangalum PR, et al. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain. ACS Nano. 2015;9:5594-5608. doi:10.1021/ACSNANO.5B01872.
He C, Li J, Cai P, et al. Two-step targeted hybrid nanoconstructs increase brain penetration and efficacy of the therapeutic antibody trastuzumab against brain metastasis of HER2-positive breast cancer. Adv Funct Mater. 2018;28:1705668. doi:10.1002/ADFM.201705668.
Lu H, Chen T, Wang Y, He Y, Pang Z, Wang Y. Dual targeting micelles loaded with paclitaxel and lapatinib for combinational therapy of brain metastases from breast cancer. Sci Rep. 2022;12:2610. doi:10.1038/S41598-022-06677-8.
Wyatt EA, Davis ME. Nanoparticles containing a combination of a drug and an antibody for the treatment of breast cancer brain metastases. Mol Pharm. 2020;17:717-721. doi:10.1021/ACS.MOLPHARMACEUT.9B01167.
Ren D, Cheng H, Wang X, et al. Emerging treatment strategies for breast cancer brain metastasis: from translational therapeutics to real-world experience. Ther Adv Med Oncol. 2020;12:12. doi:10.1177/1758835920936151.
Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X. Strategies and materials of “SMART” non-viral vectors: overcoming the barriers for brain gene therapy. Nano Today. 2020;35:101006. doi:10.1016/J.NANTOD.2020.101006.
Kim SS, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med. 2009;15:491-500. doi:10.1016/J.MOLMED.2009.09.001.
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64:701-705. doi:10.1016/J.ADDR.2011.12.006.
Zhou Y, Zhang S, Chen Z, et al. Targeted delivery of secretory promelittin via novel poly(lactone-co-β-amino ester) nanoparticles for treatment of breast cancer brain metastases. Adv Sci. 2020;7:1901866. doi:10.1002/ADVS.201901866.
Yoo B, Ross A, Pantazopoulos P, Medarova Z. MiRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer. Sci Rep. 2021;11:2844. doi:10.1038/S41598-021-82528-2.
Chen JQ, Lee JH, Herrmann MA, et al. Paclitaxel-hyaluronic nano-conjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol Cancer Ther. 2013;12:2389-2399. doi:10.1158/1535-7163.MCT-13-0132.
Du J, Zhang Y, Jin Z, et al. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. Mater Sci Eng C. 2020;116:111188. doi:10.1016/J.MSEC.2020.111188.
Kumar P, Van TT, Ranjan AP, Chaudhary P, Vishwanatha JK. In vivo imaging and biodistribution of near infrared dye loaded brain-metastatic-breast-cancer-cell-membrane coated polymeric nanoparticles. Nanotechnology. 2019;30:30. doi:10.1088/1361-6528/AB0F46.
Li J, Cai P, Shalviri A, et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano. 2014;8:9925-9940. doi:10.1021/NN501069C.
Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23:7794-7803. doi:10.1200/JCO.2005.04.937.
Roy V, Laplant BR, Gross GG, Bane CL, Palmieri FM. Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane®) in combination with gemcitabine in patients with metastatic breast cancer (N0531). Ann Oncol. 2009;20:449-453. doi:10.1093/ANNONC/MDN661.
Ricciardi GRR, Russo A, Franchina T, Ferraro G, Adamo V. Efficacy of nab-paclitaxel plus trastuzumab in a long-surviving heavily pretreated HER2-positive breast cancer patient with brain metastases. Onco Targets Ther. 2015;8:289-294. doi:10.2147/OTT.S74110.
Xie Y, Gong C, Zhang J, et al. Phase II trail of nab-paclitaxel in metastatic breast cancer patients with visceral metastases. BMC Cancer. 2021;21:1-8. doi:10.1186/S12885-021-08921-2/TABLES/3.
Lee H, Shields AF, Siegel BA, et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res. 2017;23:4190-4202. doi:10.1158/1078-0432.CCR-16-3193.
Sachdev JC, Munster P, Northfelt DW, et al. Phase I study of liposomal irinotecan in patients with metastatic breast cancer: findings from the expansion phase. Breast Cancer Res Treat. 2021;185:759-771. doi:10.1007/S10549-020-05995-7.
Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer. 2000;83:1281-1286. doi:10.1054/BJOC.2000.1459.
Cortés J, Rugo HS, Awada A, et al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase III BEACON trial. Breast Cancer Res Treat. 2017;165:329-341. doi:10.1007/S10549-017-4304-7/TABLES/3.
Tripathy D, Tolaney SM, Seidman AD, et al. Treatment with etirinotecan pegol for patients with metastatic breast cancer and brain metastases: final results from the phase 3 ATTAIN randomized clinical trial. JAMA Oncol. 2022;8:1047-1052. doi:10.1001/JAMAONCOL.2022.0514.
Montemurro F, Delaloge S, Barrios CH, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial. Ann Oncol. 2020;31:1350-1358. doi:10.1016/j.annonc.2020.06.020.
Diéras V, Weaver R, Tolaney SM, et al. Abstract PD13-07: subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Cancer Res. 2021;81:PD13-07. doi:10.1158/1538-7445.SABCS20-PD13-07.
Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi:10.1016/J.ADDR.2021.114083.
Fraguas-Sánchez AI, Martín-Sabroso C, Fernández-Carballido A, Torres-Suárez AI. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol. 2019;84:689-706. doi:10.1007/s00280-019-03910-6.
Pozzi D, Caracciolo G, Capriotti AL, et al. Surface chemistry and serum type both determine the nanoparticle-protein corona. J Proteomics. 2015;119:209-217. doi:10.1016/J.JPROT.2015.02.009.
Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front Bioeng Biotechnol. 2020;8:166. doi:10.3389/FBIOE.2020.00166/BIBTEX.
Emens LA, Adams S, Barrios CH, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021;32:983-993. doi:10.1016/J.ANNONC.2021.05.355.
Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387:217-226. doi:10.1056/NEJMOA2202809/SUPPL_FILE/NEJMOA2202809_DATA-SHARING.PDF.
Priem B, van Leent MMT, Teunissen AJP, et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell. 2020;183:786-801.e19. doi:10.1016/J.CELL.2020.09.059.
Fadel TR, Sharp FA, Vudattu N, et al. A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol. 2014;9:639-647. doi:10.1038/NNANO.2014.154.
Wu SK, Chiang CF, Hsu YH, Liou HC, Fu WM, Lin WL. Pulsed-wave low-dose ultrasound hyperthermia selectively enhances nanodrug delivery and improves antitumor efficacy for brain metastasis of breast cancer. Ultrason Sonochem. 2017;36:198-205. doi:10.1016/J.ULTSONCH.2016.11.033.
معلومات مُعتمدة: 30258 United Kingdom CRUK_ Cancer Research UK
فهرسة مساهمة: Keywords: biodistribution; brain metastasis; breast cancer; drug delivery; nanoparticle
تواريخ الأحداث: Date Created: 20230425 Date Completed: 20230721 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1002/ijc.34542
PMID: 37096795
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0215
DOI:10.1002/ijc.34542