دورية أكاديمية

Hybrid De Novo Whole-Genome Assembly, Annotation, and Identification of Secondary Metabolite Gene Clusters in the Ex-Type Strain of Chrysosporium keratinophilum .

التفاصيل البيبلوغرافية
العنوان: Hybrid De Novo Whole-Genome Assembly, Annotation, and Identification of Secondary Metabolite Gene Clusters in the Ex-Type Strain of Chrysosporium keratinophilum .
المؤلفون: Granados-Casas AO; Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain., Sastoque AP; Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain., Stchigel AM; Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain., Fernández-Bravo A; Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain., Cano-Lira JF; Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain.
المصدر: Journal of fungi (Basel, Switzerland) [J Fungi (Basel)] 2023 Mar 23; Vol. 9 (4). Date of Electronic Publication: 2023 Mar 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI AG Country of Publication: Switzerland NLM ID: 101671827 Publication Model: Electronic Cited Medium: Internet ISSN: 2309-608X (Electronic) Linking ISSN: 2309608X NLM ISO Abbreviation: J Fungi (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI AG, [2015]-
مستخلص: Chrysosporium is a polyphyletic genus belonging (mostly) to different families of the order Onygenales (Eurotiomycetes, Ascomycota). Certain species, such as Chrysosporium keratinophilum , are pathogenic for animals, including humans, but are also a source of proteolytic enzymes (mainly keratinases) potentially useful in bioremediation. However, only a few studies have been published regarding bioactive compounds, of which the production is mostly unpredictable due to the absence of high-quality genomic sequences. During the development of our study, the genome of the ex-type strain of Chrysosporium keratinophilum , CBS 104.66, was sequenced and assembled using a hybrid method. The results showed a high-quality genome of 25.4 Mbp in size spread across 25 contigs, with an N50 of 2.0 Mb, 34,824 coding sequences, 8002 protein sequences, 166 tRNAs, and 24 rRNAs. The functional annotation of the predicted proteins was performed using InterProScan, and the KEGG pathway mapping using BlastKOALA. The results identified a total of 3529 protein families and 856 superfamilies, which were classified into six levels and 23 KEGG categories. Subsequently, using DIAMOND, we identified 83 pathogen-host interactions (PHI) and 421 carbohydrate-active enzymes (CAZymes). Finally, the analysis using AntiSMASH showed that this strain has a total of 27 biosynthesis gene clusters (BGCs), suggesting that it has a great potential to produce a wide variety of secondary metabolites. This genomic information provides new knowledge that allows for a deeper understanding of the biology of C. keratinophilum , and offers valuable new information for further investigations of the Chrysosporium species and the order Onygenales.
References: PLoS Genet. 2011 Oct;7(10):e1002345. (PMID: 22046142)
Microbiology (Reading). 2014 May;160(Pt 5):970-979. (PMID: 24586035)
BMC Genomics. 2016 May 17;17:367. (PMID: 27189621)
Int J Mol Sci. 2018 Aug 13;19(8):. (PMID: 30104475)
Med Mycol. 2020 Apr 1;58(3):372-379. (PMID: 31226713)
Genome Res. 2009 Oct;19(10):1722-31. (PMID: 19717792)
Microb Biotechnol. 2020 Mar;13(2):442-457. (PMID: 31613061)
Int J Mol Sci. 2021 Aug 28;22(17):. (PMID: 34502268)
Persoonia. 2013 Dec;31:86-100. (PMID: 24761037)
Proc Natl Acad Sci U S A. 2021 May 4;118(18):. (PMID: 33906945)
Acta Otorrinolaringol Esp. 2007 Apr;58(4):164-6. (PMID: 17428413)
Curr Protein Pept Sci. 2017;18(11):1065-1073. (PMID: 27526929)
Bioinformatics. 2016 Apr 1;32(7):1009-15. (PMID: 26589280)
G3 (Bethesda). 2015 Nov 27;6(2):235-44. (PMID: 26613950)
Genomics. 2018 May;110(3):201-209. (PMID: 28970048)
Methods Mol Biol. 2019;1962:1-14. (PMID: 31020551)
Sci Rep. 2022 Feb 8;12(1):2142. (PMID: 35136194)
Mol Plant Microbe Interact. 2012 Nov;25(11):1419-29. (PMID: 22835272)
Comput Struct Biotechnol J. 2020 Oct 29;18:3267-3277. (PMID: 33209211)
BMC Genomics. 2014 Oct 29;15:943. (PMID: 25351875)
Nucleic Acids Res. 2020 Jan 8;48(D1):D613-D620. (PMID: 31733065)
Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492. (PMID: 29411063)
Bioinformatics. 2014 May 1;30(9):1236-40. (PMID: 24451626)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Glycobiology. 2020 Feb 19;30(3):186-197. (PMID: 31691790)
Can J Microbiol. 1971 Dec;17(12):1576-9. (PMID: 5168359)
Plant J. 2011 Apr;66(1):182-93. (PMID: 21443631)
J Fungi (Basel). 2021 Mar 05;7(3):. (PMID: 33807546)
Front Microbiol. 2017 Jan 25;8:83. (PMID: 28179902)
Genetics. 2018 Apr;208(4):1657-1669. (PMID: 29467168)
Curr Genet. 2004 Nov;46(5):287-94. (PMID: 15480676)
NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108. (PMID: 33575650)
Mycopathologia. 2002;156(3):151-6. (PMID: 12749577)
Biotechnol Adv. 2020 Nov 15;44:107607. (PMID: 32768519)
Bioinformatics. 2013 Apr 15;29(8):1072-5. (PMID: 23422339)
J Mol Biol. 2016 Feb 22;428(4):726-731. (PMID: 26585406)
Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
Mykosen. 1972 Mar 1;15(3):105-10. (PMID: 4629035)
Genome Res. 2017 May;27(5):787-792. (PMID: 28130360)
Mol Biol Evol. 2018 Mar 1;35(3):543-548. (PMID: 29220515)
Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87. (PMID: 31032519)
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. (PMID: 29771380)
Front Plant Sci. 2019 Mar 01;10:223. (PMID: 30881367)
فهرسة مساهمة: Keywords: ANI; Ascomycota; Chrysosporium keratinophilum; Onygenales; biosynthetic pathways; genome
تواريخ الأحداث: Date Created: 20230428 Latest Revision: 20230501
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10145314
DOI: 10.3390/jof9040389
PMID: 37108844
قاعدة البيانات: MEDLINE
الوصف
تدمد:2309-608X
DOI:10.3390/jof9040389