دورية أكاديمية

Symbiosis preservation: Putative regulation of fatty acyl-CoA reductase by miR-31a within the symbiont harboring bacteriome through tsetse evolution.

التفاصيل البيبلوغرافية
العنوان: Symbiosis preservation: Putative regulation of fatty acyl-CoA reductase by miR-31a within the symbiont harboring bacteriome through tsetse evolution.
المؤلفون: Lee MH; Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States., Hu G; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States., Rio RVM; Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States.
المصدر: Frontiers in microbiology [Front Microbiol] 2023 Apr 11; Vol. 14, pp. 1151319. Date of Electronic Publication: 2023 Apr 11 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Tsetse flies are the sole vectors of African trypanosomes. In addition to trypanosomes, tsetse harbor obligate Wigglesworthia glossinidia bacteria that are essential to tsetse biology. The absence of Wigglesworthia results in fly sterility, thus offering promise for population control strategies. Here, microRNA (miRNAs) and mRNA expression are characterized and compared between the exclusive Wigglesworthia -containing bacteriome and adjacent aposymbiotic tissue in females of two evolutionarily distant tsetse species ( Glossina brevipalpis and G. morsitans ). A total of 193 miRNAs were expressed in either species, with 188 of these expressed in both species, 166 of these were novel to Glossinidae, and 41 miRNAs exhibited comparable expression levels between species. Within bacteriomes, 83 homologous mRNAs demonstrated differential expression between G. morsitans aposymbiotic and bacteriome tissues, with 21 of these having conserved interspecific expression. A large proportion of these differentially expressed genes are involved in amino acid metabolism and transport, symbolizing the essential nutritional role of the symbiosis. Further bioinformatic analyses identified a sole conserved miRNA::mRNA interaction (miR-31a::fatty acyl-CoA reductase) within bacteriomes likely catalyzing the reduction of fatty acids to alcohols which comprise components of esters and lipids involved in structural maintenance. The Glossina fatty acyl-CoA reductase gene family is characterized here through phylogenetic analyses to further understand its evolutionary diversification and the functional roles of members. Further research to characterize the nature of the miR-31a::fatty acyl-CoA reductase interaction may find novel contributions to the symbiosis to be exploited for vector control.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Lee, Hu and Rio.)
References: RNA. 2004 Oct;10(10):1507-17. (PMID: 15383676)
Nucleic Acids Res. 2021 Jan 8;49(D1):D458-D460. (PMID: 33104802)
Science. 2004 Sep 3;305(5689):1434-7. (PMID: 15284453)
BMC Res Notes. 2019 Sep 30;12(1):638. (PMID: 31564246)
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9156-61. (PMID: 12871998)
Nucleic Acids Res. 2000 Jan 1;28(1):231-4. (PMID: 10592234)
J Immunol. 2012 Apr 1;188(7):3395-403. (PMID: 22368278)
Science. 1978 Aug 25;201(4357):750-3. (PMID: 675256)
Mol Ecol. 2018 Apr;27(8):1777-1793. (PMID: 29271121)
Infect Genet Evol. 2009 Jan;9(1):124-41. (PMID: 18992846)
J Cell Sci. 2014 Jun 15;127(Pt 12):2736-48. (PMID: 24762813)
Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268. (PMID: 31777944)
Bioinformatics. 2016 Jul 15;32(14):2089-95. (PMID: 27153568)
J Mol Evol. 1999 Jan;48(1):49-58. (PMID: 9873076)
Nucleic Acids Res. 2015 Jan;43(Database issue):D707-13. (PMID: 25510499)
Nat Biotechnol. 2010 May;28(5):511-5. (PMID: 20436464)
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6961-6. (PMID: 27185908)
Proc R Soc Lond B Biol Sci. 1978 Jun 5;202(1146):55-72. (PMID: 27816)
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31. (PMID: 15215404)
mBio. 2019 Jun 4;10(3):. (PMID: 31164458)
Nat Biotechnol. 2008 Apr;26(4):407-15. (PMID: 18392026)
Cell Host Microbe. 2012 Aug 16;12(2):153-65. (PMID: 22901536)
Nucleic Acids Res. 2022 Jan 7;50(D1):D1040-D1045. (PMID: 34792158)
Nat Biotechnol. 2019 Aug;37(8):907-915. (PMID: 31375807)
Nucleic Acids Res. 2013 May 1;41(10):e108. (PMID: 23558742)
Front Microbiol. 2018 Sep 03;9:2037. (PMID: 30233523)
Proc Biol Sci. 2017 Jun 28;284(1857):. (PMID: 28659447)
PLoS Genet. 2007 May 11;3(5):e67. (PMID: 17500592)
BMC Genomics. 2017 Nov 6;18(1):847. (PMID: 29110697)
Genes Genomics. 2019 Jul;41(7):747-755. (PMID: 30900191)
Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8. (PMID: 17991681)
Insect Biochem Mol Biol. 2010 Sep;40(9):641-9. (PMID: 20542116)
Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496. (PMID: 29040681)
Genetics. 1999 Apr;151(4):1531-45. (PMID: 10101175)
Parasitology. 1971 Dec;63(3):507-12. (PMID: 5139030)
Nature. 1975 Mar 6;254(5495):51-3. (PMID: 1113875)
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. (PMID: 33885785)
Nucleic Acids Res. 2003 Jan 1;31(1):28-33. (PMID: 12519941)
Dev Biol. 2014 Jan 1;385(1):23-31. (PMID: 24183938)
Genome Biol Evol. 2019 Jun 1;11(6):1541-1551. (PMID: 31076758)
BMC Microbiol. 2018 Nov 23;18(Suppl 1):145. (PMID: 30470188)
Mol Biol Evol. 1994 May;11(3):469-82. (PMID: 8015440)
Cell. 2006 May 5;125(3):509-22. (PMID: 16678095)
Int J Syst Bacteriol. 1995 Oct;45(4):848-51. (PMID: 7547309)
Appl Environ Microbiol. 2015 Aug 15;81(16):5375-86. (PMID: 26025907)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
J Chem Ecol. 1984 Mar;10(3):429-50. (PMID: 24318549)
PLoS Pathog. 2021 Jun 9;17(6):e1009475. (PMID: 34107000)
Nucleic Acids Res. 2016 Jul 8;44(W1):W232-5. (PMID: 27084950)
Mol Biol Evol. 2018 Feb 1;35(2):518-522. (PMID: 29077904)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Insect Biochem Mol Biol. 2009 Feb;39(2):90-5. (PMID: 19041942)
Insect Biochem Mol Biol. 2015 Jul;62:11-22. (PMID: 25196249)
Mol Ecol. 2022 May;31(9):2611-2624. (PMID: 35243711)
Genome Biol. 2019 Sep 2;20(1):187. (PMID: 31477173)
Methods Mol Biol. 2012;928:185-95. (PMID: 22956143)
RNA. 2005 Jul;11(7):995-1003. (PMID: 15928346)
Appl Environ Microbiol. 2014 Sep;80(18):5844-53. (PMID: 25038091)
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4. (PMID: 16845047)
Science. 2014 Apr 25;344(6182):380-6. (PMID: 24763584)
Experientia. 1976 Aug 15;32(8):995-6. (PMID: 986317)
Methods Mol Biol. 2014;1079:105-16. (PMID: 24170397)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
Nat Methods. 2017 Jun;14(6):587-589. (PMID: 28481363)
Genome Biol Evol. 2017 Sep 1;9(9):2276-2291. (PMID: 28934375)
Bioinformatics. 2003 Jan 22;19(2):185-93. (PMID: 12538238)
Proc Biol Sci. 2006 Apr 7;273(1588):805-14. (PMID: 16618673)
Sci Rep. 2020 Feb 13;10(1):2570. (PMID: 32054914)
Syst Biol. 2010 May;59(3):307-21. (PMID: 20525638)
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14300-14308. (PMID: 31221757)
Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93. (PMID: 26582926)
PLoS Genet. 2016 Aug 08;12(8):e1006154. (PMID: 27500738)
معلومات مُعتمدة: P20 GM103434 United States GM NIGMS NIH HHS; P20 GM121322 United States GM NIGMS NIH HHS; R21 AI145271 United States AI NIAID NIH HHS; U54 GM104942 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: evolution; fatty acyl-CoA reductase; microRNA; symbiosis; tsetse
تواريخ الأحداث: Date Created: 20230428 Latest Revision: 20240526
رمز التحديث: 20240526
مُعرف محوري في PubMed: PMC10126493
DOI: 10.3389/fmicb.2023.1151319
PMID: 37113220
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2023.1151319