دورية أكاديمية

Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells.

التفاصيل البيبلوغرافية
العنوان: Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells.
المؤلفون: Li H; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Luo Q; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Cai S; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Tie R; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Meng Y; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Shan W; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Xu Y; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Zeng X; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China., Qian P; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China. axu@zju.edu.cn.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China. axu@zju.edu.cn.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China. axu@zju.edu.cn.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China. axu@zju.edu.cn.; Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China. axu@zju.edu.cn.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China. axu@zju.edu.cn.; School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China. axu@zju.edu.cn., Huang H; Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China. huanghe@zju.edu.cn.; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China. huanghe@zju.edu.cn.; Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China. huanghe@zju.edu.cn.; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China. huanghe@zju.edu.cn.; Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China. huanghe@zju.edu.cn.
المصدر: Stem cell research & therapy [Stem Cell Res Ther] 2023 Apr 30; Vol. 14 (1), pp. 117. Date of Electronic Publication: 2023 Apr 30.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101527581 Publication Model: Electronic Cited Medium: Internet ISSN: 1757-6512 (Electronic) Linking ISSN: 17576512 NLM ISO Abbreviation: Stem Cell Res Ther Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central
مواضيع طبية MeSH: Zebrafish*/genetics , Zebrafish*/metabolism , Glia Maturation Factor*/genetics , Glia Maturation Factor*/metabolism, Animals ; Hematopoietic Stem Cells/metabolism ; Zebrafish Proteins/genetics
مستخلص: Background: In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development.
Methods: In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line.
Results: We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos.
Conclusions: We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
(© 2023. The Author(s).)
References: BMC Immunol. 2012 Apr 18;13:21. (PMID: 22510515)
Int J Dev Biol. 2010;54(6-7):1175-88. (PMID: 20711994)
Blood. 2012 Apr 5;119(14):3226-35. (PMID: 22308291)
PLoS Genet. 2007 May 25;3(5):e78. (PMID: 17530925)
Dis Model Mech. 2011 May;4(3):400-10. (PMID: 21245263)
Nat Cell Biol. 2016 Nov;18(11):1111-1117. (PMID: 27723718)
Blood. 2010 Jul 29;116(4):544-53. (PMID: 20442369)
Cytoskeleton (Hoboken). 2011 Sep;68(9):471-90. (PMID: 21850706)
Oncol Rep. 2017 Feb;37(2):929-936. (PMID: 28075454)
Nature. 2014 Aug 21;512(7514):319-23. (PMID: 25119047)
Nature. 2010 Mar 4;464(7285):112-5. (PMID: 20154732)
Blood. 2017 Jun 22;129(25):3344-3351. (PMID: 28408459)
Trends Cell Biol. 2018 Jul;28(7):560-573. (PMID: 29665979)
Front Oncol. 2021 Jul 23;11:629633. (PMID: 34367945)
Cell. 2011 Mar 4;144(5):646-74. (PMID: 21376230)
Elife. 2018 Aug 22;7:. (PMID: 30132756)
Biotechnol Bioeng. 2014 Nov;111(11):2326-37. (PMID: 24898772)
Dev Cell. 2005 Mar;8(3):389-400. (PMID: 15737934)
Annu Rev Genet. 2005;39:481-501. (PMID: 16285869)
Genomics Proteomics Bioinformatics. 2003 Feb;1(1):52-7. (PMID: 15626333)
Stem Cell Res Ther. 2021 Jun 19;12(1):353. (PMID: 34147128)
Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62. (PMID: 19197332)
Cell Biosci. 2013 Aug 28;3(1):33. (PMID: 23985334)
J Biochem. 2018 Oct 1;164(4):265-275. (PMID: 30020470)
BMC Cancer. 2021 Apr 17;21(1):423. (PMID: 33863293)
J Biol Chem. 2016 Apr 15;291(16):8549-64. (PMID: 26895964)
Cell. 2008 Feb 22;132(4):631-44. (PMID: 18295580)
Dev Cell. 2006 Dec;11(6):845-57. (PMID: 17141159)
Stem Cell Reports. 2015 Nov 10;5(5):690-701. (PMID: 26455414)
Acta Biochim Biophys Sin (Shanghai). 2007 May;39(5):384-90. (PMID: 17492136)
J Exp Med. 2017 Oct 2;214(10):2817-2827. (PMID: 28830909)
J Exp Med. 2015 May 4;212(5):665-80. (PMID: 25870199)
Dev Cell. 2020 Feb 24;52(4):446-460.e5. (PMID: 32032546)
Nat Genet. 2002 May;31(1):106-10. (PMID: 11967535)
Cell Rep. 2015 Jun 30;11(12):1892-904. (PMID: 26095363)
Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96. (PMID: 24556840)
Dev Cell. 2009 Jun;16(6):909-16. (PMID: 19531361)
Blood. 2011 Oct 13;118(15):4102-10. (PMID: 21849483)
Blood. 2006 Mar 15;107(6):2317-21. (PMID: 16304059)
Exp Mol Med. 2019 Oct 24;51(10):1-12. (PMID: 31649245)
Annu Rev Physiol. 1997;59:527-49. (PMID: 9074776)
J Leukoc Biol. 2011 Sep;90(3):529-38. (PMID: 21653232)
Nature. 2010 Mar 4;464(7285):116-20. (PMID: 20154729)
Cell Mol Life Sci. 2021 Aug;78(16):5881-5902. (PMID: 34232331)
Nat Commun. 2019 Apr 23;10(1):1839. (PMID: 31015398)
Nat Protoc. 2008;3(1):59-69. (PMID: 18193022)
Trends Cell Biol. 2018 Sep;28(9):749-760. (PMID: 29779865)
Biochim Biophys Acta. 1998 Mar 13;1396(3):242-4. (PMID: 9545571)
J Exp Med. 2015 May 4;212(5):649-63. (PMID: 25870200)
Genomics Proteomics Bioinformatics. 2006 Aug;4(3):145-55. (PMID: 17127212)
Circ Res. 2006 Aug 18;99(4):424-33. (PMID: 16873721)
Development. 2001 Oct;128(19):3675-83. (PMID: 11585794)
Dev Dyn. 2020 Nov;249(11):1302-1317. (PMID: 32996661)
Haematologica. 2019 Feb;104(2):e47-e50. (PMID: 30026339)
Gynecol Oncol. 2014 Mar;132(3):745-51. (PMID: 24486602)
Int Immunol. 2022 Jan 1;34(1):35-43. (PMID: 34673932)
Brain Res. 2004 Oct 22;1024(1-2):225-32. (PMID: 15451385)
Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):965-70. (PMID: 11128990)
Dev Cell. 2017 Mar 27;40(6):523-536.e6. (PMID: 28350986)
Cell Mol Life Sci. 2020 Sep;77(17):3453-3464. (PMID: 31732791)
Cell. 2016 Jun 30;166(1):21-45. (PMID: 27368099)
Nature. 2017 May 25;545(7655):432-438. (PMID: 28514439)
Mech Dev. 2009 Oct;126(10):898-912. (PMID: 19595765)
Compr Physiol. 2019 Mar 15;9(2):873-904. (PMID: 30873580)
J Biol Chem. 2013 Sep 6;288(36):25683-25688. (PMID: 23897816)
J Exp Med. 1999 Nov 1;190(9):1329-42. (PMID: 10544204)
Cell Mol Life Sci. 2021 May;78(9):4143-4160. (PMID: 33559689)
فهرسة مساهمة: Keywords: Blood flow; Glia maturation factor-γ; HSPC; Notch; Yap; Zebrafish
المشرفين على المادة: 0 (glia maturation factor gamma)
0 (Glia Maturation Factor)
0 (Zebrafish Proteins)
تواريخ الأحداث: Date Created: 20230430 Date Completed: 20230502 Latest Revision: 20230503
رمز التحديث: 20230503
مُعرف محوري في PubMed: PMC10150485
DOI: 10.1186/s13287-023-03328-1
PMID: 37122014
قاعدة البيانات: MEDLINE
الوصف
تدمد:1757-6512
DOI:10.1186/s13287-023-03328-1