دورية أكاديمية

AFM-TEM correlation microscopy and its application to lipid nanoparticles.

التفاصيل البيبلوغرافية
العنوان: AFM-TEM correlation microscopy and its application to lipid nanoparticles.
المؤلفون: Bagrov DV; Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia., Adlerberg VV; Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia., Skryabin GO; Department of oncogene regulation, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia., Nikishin II; Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia., Galetsky SA; Department of oncogene regulation, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia., Tchevkina EM; Department of oncogene regulation, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia., Kirpichnikov MP; Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia., Shaitan KV; Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
المصدر: Microscopy research and technique [Microsc Res Tech] 2023 Jul; Vol. 86 (7), pp. 781-790. Date of Electronic Publication: 2023 May 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مواضيع طبية MeSH: Liposomes* , Nanoparticles*, Microscopy, Atomic Force/methods ; Microscopy, Electron, Transmission
مستخلص: So far, only a few articles have demonstrated the possibility of correlated AFM-TEM imaging - sequential imaging of the same individual objects using atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The current work contributes to the development of this approach by giving a step-by-step procedure, which yields pairs of correlated AFM-TEM images. We describe the application of correlation AFM-TEM microscopy to lipid nanoparticles (small extracellular vesicles and liposomes). The sizes of individual particles measured by the two methods were in good agreement, taking the tip broadening into account. The correlated AFM-TEM imaging can be valuable for single-particle analysis and nanometrology.
(© 2023 Wiley Periodicals LLC.)
References: Abramczyk, H., Imiela, A., Brozek-Pluska, B., & Kopec, M. (2019). Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research. Nanomedicine, 14(14), 1873-1888. https://doi.org/10.2217/nnm-2018-0335.
Arganda-Carreras, I., Sorzano, C. O. S., Marabini, R., Carazo, J. M., Ortiz-De-Solorzano, C., & Kybic, J. (2006). Lecture Notes in Computer Science. In Consistent and elastic registration of histological sections using vector-spline regularization (Vol. 4241 LNCS, pp. 85-95). Springer. https://doi.org/10.1007/11889762_8.
Bagrov, D. V., Senkovenko, A. M., Nikishin, I. I., Skryabin, G. O., Kopnin, P. B., & Tchevkina, E. M. (2021). Application of AFM, TEM, and NTA for characterization of exosomes produced by placenta-derived mesenchymal cells. Journal of Physics Conference Series, 1942(1), 012013. https://doi.org/10.1088/1742-6596/1942/1/012013.
Bokstad, M., & Medalia, O. (2014). Correlative light electron microscopy as a navigating tool for Cryo-electron tomography analysis. In Fluorescence Microscopy: Super-Resolution and other Novel Techniques (pp. 121-131). Academic Press.
Bragina, V. A., Khomyakova, E., Orlov, A. V., Znoyko, S. L., Mochalova, E. N., Paniushkina, L., Shender, V. O., Erbes, T., Evtushenko, E. G., Bagrov, D. V., Lavrenova, V. N., Nazarenko, I., & Nikitin, P. I. (2022). Highly sensitive nanomagnetic quantification of extracellular vesicles by immunochromatographic strips: A tool for liquid biopsy. Nanomaterials, 12(9), 1579. https://doi.org/10.3390/nano12091579.
Casares-Arias, J., Alonso, M. A., San Paulo, Á., & González, M. U. (2021). Correlative confocal and scanning electron microscopy of cultured cells without using dedicated equipment. STAR Protocols, 2(3), 100727. https://doi.org/10.1016/j.xpro.2021.100727.
Dobnik, D., Kogovšek, P., Jakomin, T., Košir, N., Tušek Žnidarič, M., Leskovec, M., Kaminsky, S. M., Mostrom, J., Lee, H., & Ravnikar, M. (2019). Accurate quantification and characterization of adeno-associated viral vectors. Frontiers in Microbiology, 17(10), 1570. https://doi.org/10.3389/fmicb.2019.01570.
Efimova, S. S., Zakharova, A. A., Ismagilov, A. A., Schagina, L. V., Malev, V. V., Bashkirov, P. V., & Ostroumova, O. S. (2018). Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(3), 691-699. https://doi.org/10.1016/j.bbamem.2017.12.010.
Harmati, M., Tarnai, Z., Decsi, G., Kormondi, S., Szegletes, Z., Janovak, L., Dekany, I., Saydam, O., Gyukity-Sebestyen, E., Dobra, G., Nagy, I., Nagy, K., & Buzas, K. (2017). Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. Journal of Oral Pathology & Medicine, 46(4), 259-266. https://doi.org/10.1111/jop.12486.
Hendricks, G., Sena-Esteves, M., & Gao, G. (2020). Analysis of recombinant adeno-associated virus (rAAV) sample morphology using negative staining and high-resolution electron microscopy. Cold Spring Harber Protocols, 2020(8), pdb.prot095661. https://doi.org/10.1101/pdb.prot095661.
Hermelink, A., Naumann, D., Piesker, J., Lasch, P., Laue, M., & Hermann, P. (2017). Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst, 142(8), 1342-1349. https://doi.org/10.1039/c6an02151d.
Jadavi, S., Bianchini, P., Cavalleri, O., Dante, S., Canale, C., & Diaspro, A. (2021). Correlative nanoscopy: A multimodal approach to molecular resolution. Microscopy Research and Technique, 84(10), 2472-2482. https://doi.org/10.1002/jemt.23800.
Karttunen, J., Heiskanen, M., Navarro-Ferrandis, V., das Gupta, S., Lipponen, A., Puhakka, N., Rilla, K., Koistinen, A., & Pitkänen, A. (2019). Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. Journal of Extracellular Vesicles, 8(1), 1555410. https://doi.org/10.1080/20013078.2018.1555410.
Katsen-Globa, A., Puetz, N., Gepp, M. M., Neubauer, J. C., & Zimmermann, H. (2016). Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying. Scanning, 38(6), 625-633. https://doi.org/10.1002/sca.21310.
Klinov, D. V., Lagutina, I. V., Prokhorov, V. V., Neretina, T., Khil, P. P., Lebedev, Y. B., Cherny, D. I., Demin, V. V., & Sverdlov, E. D. (1998). High resolution mapping DNAs by R-loop atomic force microscopy. Nucleic Acids Research, 26(20), 4603-4610. https://doi.org/10.1093/nar/26.20.4603.
Kryzhanovsky, A. (2009). SPMImageMagic. https://sites.google.com/site/spmimagemagic.
Lin, A. C., & Goh, M. C. (2002a). Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy. Proteins: Structure, Function, and Genetics, 49(3), 378-384. https://doi.org/10.1002/prot.10224.
Lin, A. C., & Goh, M. C. (2002b). A novel sample holder allowing atomic force microscopy on transmission electron microscopy specimen grids: Repetitive, direct correlation between AFM and TEM images. Journal of Microscopy, 205(2), 205-208. https://doi.org/10.1046/j.0022-2720.2001.00978.x.
Liv, N., Zonnevylle, A. C., Narvaez, A. C., Effting, A. P. J., Voorneveld, P. W., Lucas, M. S., Hardwick, J. C., Wepf, R. A., Kruit, P., & Hoogenboom, J. P. (2013). Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One, 8(2), e55707. https://doi.org/10.1371/journal.pone.0055707.
Mulvaney, P., & Giersig, M. (1996). Imaging nanosized gold colloids by atomic force microscopy: A direct comparison with transmission electron microscopy. Journal of the Chemical Society, Faraday Transactions, 92(17), 3137-3143. https://doi.org/10.1039/ft9969203137.
Nikishin, I., Dulimov, R., Skryabin, G., Galetsky, S., Tchevkina, E., & Bagrov, D. (2021). ScanEV - A neural network-based tool for the automated detection of extracellular vesicles in TEM images. Micron, 145, 103044. https://doi.org/10.1016/j.micron.2021.103044.
Paolini, L., Zendrini, A., Noto, G. D., Busatto, S., Lottini, E., Radeghieri, A., Dossi, A., Caneschi, A., Ricotta, D., & Bergese, P. (2016). Residual matrix from different separation techniques impacts exosome biological activity. Scientific Reports, 6, 1-11. https://doi.org/10.1038/srep23550.
Rikkert, L. G., Nieuwland, R., Terstappen, L. W. M. M., & Coumans, F. A. W. (2019). Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles, 8(1), 1555419. https://doi.org/10.1080/20013078.2018.1555419.
Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., & Plitzko, J. M. (2007). Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology, 160(2), 135-145. https://doi.org/10.1016/j.jsb.2007.07.011.
Sartori-Rupp, A., Cordero Cervantes, D., Pepe, A., Gousset, K., Delage, E., Corroyer-Dulmont, S., Schmitt, C., Krijnse-Locker, J., & Zurzolo, C. (2019). Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nature Communications, 10(1), 342. https://doi.org/10.1038/s41467-018-08178-7.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019.
Schorb, M., Gaechter, L., Avinoam, O., Sieckmann, F., Clarke, M., Bebeacua, C., Bykov, Y. S., Sonnen, A. F. P., Lihl, R., & Briggs, J. A. G. (2017). New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. Journal of Structural Biology, 197(2), 83-93. https://doi.org/10.1016/j.jsb.2016.06.020.
Skliar, M., & Chernyshev, V. S. (2019). Imaging of extracellular vesicles by atomic force microscopy. Journal of Visualized Experiments, 2019(151), 1-13. https://doi.org/10.3791/59254.
Skryabin, G. O., Komelkov, A. V., Galetsky, S. A., Bagrov, D. V., Evtushenko, E. G., Nikishin, I. I., Zhordaniia, K. I., Savelyeva, E. E., Akselrod, M. E., Paianidi, I. G., & Tchevkina, E. M. (2021). Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker. Journal of Cellular Biochemistry, 122(1), 100-115. https://doi.org/10.1002/jcb.29834.
Skryabin, G. O., Komelkov, A. V., Zhordania, K. I., Bagrov, D. V., Vinokurova, S. V., Galetsky, S. A., Elkina, N. V., Denisova, D. A., Enikeev, A. D., & Tchevkina, E. M. (2022). Extracellular vesicles from uterine aspirates represent a promising source for screening markers of gynecologic cancers. Cell, 11(7), 1064. https://doi.org/10.3390/cells11071064.
Surtchev, M., Wall, M., & Magonov, S. (2016). Combined AFM/Raman studies of heterogeneous polymer materials. MRS Advances, 1(25), 1859-1864. https://doi.org/10.1557/adv.2016.412.
Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology (Vol. 30, pp. 3.22.1-3.22.29). https://doi.org/10.1002/0471143030.cb0322s30.
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750.
Wu, H. L., Chen, P. Y., Chi, C. L., Tsao, H. K., & Sheng, Y. J. (2013). Vesicle deposition on hydrophilic solid surfaces. Soft Matter, 9(6), 1908-1919. https://doi.org/10.1039/c2sm27450g.
Wu, J. H., Ang, S. G., & Xu, G. Q. (2008). Atomic force microscopy study of self-assembled sodium chloride Nanocrystallites and their morphology transitions. Journal of Physical Chemistry C, 112(20), 7605-7610. https://doi.org/10.1021/jp800358s.
Yamada, Y., Konno, H., & Shimabukuro, K. (2017). Demonstration of correlative atomic force and transmission electron microscopy using Actin cytoskeleton. Biophysics Physicobiology, 14, 111-117. https://doi.org/10.2142/biophysico.14.0_111.
Yaminsky, I. V., Akhmetova, A. I., & Meshkov, G. B. (2018). Femtoscan online software and visualization of nano-objecs in high-resolution microscopy. Nanoindustry Russia, 11(6), 414-416. https://doi.org/10.22184/1993-8578.2018.11.6.414.416.
Yao, Y., Jiang, Y., Song, J., Wang, R., Li, Z., Yang, L., Wu, W., Zhang, L., & Peng, Q. (2022). Exosomes as potential functional nanomaterials for tissue engineering. Advanced Healthcare Materials, 2201989. https://doi.org/10.1002/adhm.202201989.
Zhou, B., Xu, K., Zheng, X., Chen, T., Wang, J., Song, Y., Shao, Y., & Zheng, S. (2020). Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy, 5(1), 144. https://doi.org/10.1038/s41392-020-00258-9.
معلومات مُعتمدة: Russian Science Foundation
فهرسة مساهمة: Keywords: TEM grids; image correlation; image registration; lipid nanoparticles
المشرفين على المادة: 0 (Lipid Nanoparticles)
0 (Liposomes)
تواريخ الأحداث: Date Created: 20230501 Date Completed: 20230622 Latest Revision: 20230622
رمز التحديث: 20231215
DOI: 10.1002/jemt.24336
PMID: 37125595
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24336