دورية أكاديمية

Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition.

التفاصيل البيبلوغرافية
العنوان: Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition.
المؤلفون: Bishop TR; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Subramanian C; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA., Bilotta EM; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Garnar-Wortzel L; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Ramos AR; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Zhang Y; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Asiaban JN; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Ott CJ; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.; Department of Medicine, Harvard Medical School, Boston, MA, USA., Rock CO; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA., Erb MA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. michaelerb@scripps.edu.
المصدر: Nature chemical biology [Nat Chem Biol] 2023 Oct; Vol. 19 (10), pp. 1215-1222. Date of Electronic Publication: 2023 May 01.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Histone Acetyltransferases*/metabolism , Neoplasms*, Humans ; p300-CBP Transcription Factors/metabolism ; Acetyl Coenzyme A/metabolism ; Protein Binding
مستخلص: Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.
(© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Nat Chem Biol. 2023 Oct;19(10):1174-1175. (PMID: 37127755)
References: Sheikh, B. N. & Akhtar, A. The many lives of KATs—detectors, integrators and modulators of the cellular environment. Nat. Rev. Genet. 20, 7–23 (2019). (PMID: 3039004910.1038/s41576-018-0072-4)
Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015). (PMID: 25982114447548910.1016/j.molcel.2015.04.011)
Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14, 33–41 (1996). (PMID: 878281710.1038/ng0996-33)
Wang, L. et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333, 765–769 (2011). (PMID: 21764752325101210.1126/science.1201662)
Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 6, 430–445 (2016). (PMID: 2660352510.1158/2159-8290.CD-15-0754)
Yan, F. et al. KAT6A and ENL form an epigenetic transcriptional control module to drive critical leukemogenic gene-expression programs. Cancer Discov. 12, 792–811 (2022). (PMID: 34853079891603710.1158/2159-8290.CD-20-1459)
Kitabayashi, I., Aikawa, Y., Nguyen, L. A., Yokoyama, A. & Ohki, M. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J. 20, 7184–7196 (2002). (PMID: 10.1093/emboj/20.24.7184)
Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017). (PMID: 28953875605059010.1038/nature24028)
Hogg, S. J. et al. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol. Cell 81, 2183–2200.e13 (2021). (PMID: 34019788818360110.1016/j.molcel.2021.04.015)
Vannam, R. et al. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chem. Biol. 28, 503–514.e12 (2021). (PMID: 3340092510.1016/j.chembiol.2020.12.004)
Durbin, A. D. et al. EP300 selectively controls the enhancer landscape of MYCN-amplified neuroblastoma. Cancer Discov. 12, 730–751 (2022). (PMID: 34772733890427710.1158/2159-8290.CD-21-0385)
MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020). (PMID: 3182728210.1038/s41586-019-1835-6)
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017). (PMID: 28753430566767810.1016/j.cell.2017.06.010)
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e12 (2018). (PMID: 29804834607841810.1016/j.cell.2018.04.033)
Harada, T. et al. A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes Dev. 34, 368–389 (2022). (PMID: 10.1101/gad.349284.121)
Horiike, S. et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 11, 1442–1446 (1997). (PMID: 930559510.1038/sj.leu.2400770)
Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017). (PMID: 28241139549722010.1038/nature21688)
Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017). (PMID: 28241141537238310.1038/nature21687)
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011). (PMID: 21814200332830010.1038/nature10334)
Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011). (PMID: 21964340367952010.1038/nature10509)
Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18.e19 (2017). (PMID: 28673542566350010.1016/j.molcel.2017.06.004)
Hsu, E., Zemke, N. R. & Berk, A. J. Promoter-specific changes in initiation, elongation, and homeostasis of histone H3 acetylation during CBP/p300 inhibition. eLife 10, e63512 (2021). (PMID: 33704060800967810.7554/eLife.63512)
Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182.e6 (2021). (PMID: 3376541510.1016/j.molcel.2021.03.008)
Wilson, J. E. et al. Discovery of CPI-1612: a potent, selective, and orally bioavailable EP300/CBP histone acetyltransferase inhibitor. ACS Med. Chem. Lett. 11, 1324–1329 (2020). (PMID: 32551019729470710.1021/acsmedchemlett.0c00155)
Raisner, R. et al. Enhancer activity requires CBP / P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018). (PMID: 3011062910.1016/j.celrep.2018.07.041)
Cochran, A. G., Conery, A. R. & Sims, R. J. Bromodomains: a new target class for drug development. Nat. Rev. Drug Disco. 18, 609–628 (2019). (PMID: 10.1038/s41573-019-0030-7)
Leonardi, R., Zhang, Y. M., Rock, C. O. & Jackowski, S. Coenzyme A: back in action. Prog. Lipid Res. 44, 125–153 (2005). (PMID: 1589338010.1016/j.plipres.2005.04.001)
Zhang, Y. M., Rock, C. O. & Jackowski, S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J. Biol. Chem. 280, 32594–32601 (2005). (PMID: 1604061310.1074/jbc.M506275200)
Leonardi, R. et al. Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain. Chem. Biol. 17, 892–902 (2010). (PMID: 20797618292939510.1016/j.chembiol.2010.06.006)
Subramanian, C. et al. Allosteric regulation of mammalian pantothenate kinase. J. Biol. Chem. 291, 22302–22314 (2016). (PMID: 27555321506400810.1074/jbc.M116.748061)
Khadka, S., Chatoff, A., Snyder, N. W., DePinho, R. & Muller, F. Genetic depletion of de novo coenzyme A biosynthesis exacerbates puromycin toxicity. Preprint at bioRxiv https://doi.org/10.1101/2022.09.06.506844 (2022).
Yao, J., Subramanian, C., Rock, C. O. & Jackowski, S. Human pantothenate kinase 4 is a pseudo-pantothenate kinase. Protein Sci. 28, 1031–1047 (2019). (PMID: 30927326651174610.1002/pro.3611)
Huang, L. et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12, 621–627 (2016). (PMID: 27322068700158010.1038/nchembio.2108)
Dibble, C. C. et al. PI3K drives the de novo synthesis of coenzyme A from vitamin B5 Check for updates. Nature 608, 192–198 (2022). (PMID: 35896750935259510.1038/s41586-022-04984-8)
De Carvalho, F. D. & Quick, M. Surprising substrate versatility in SLC5A6: Na + -coupled I - transport by the human Na+/multivitamin transporter (hSMVT). J. Biol. Chem. 286, 131–137 (2011). (PMID: 2098026510.1074/jbc.M110.167197)
Xue, L. et al. Probing coenzyme A homeostasis with semisynthetic biosensors. Nat. Chem. Biol. 19, 346–355 (2023). (PMID: 3631657110.1038/s41589-022-01172-7)
Montgomery, D. C. et al. Global profiling of acetyltransferase feedback regulation. J. Am. Chem. Soc. 138, 6388–6391 (2016). (PMID: 27149119632025410.1021/jacs.6b03036)
Thomas, S. P. & Denu, J. M. Short-chain fatty acids activate acetyltransferase p300. eLife 10, 1–23 (2021). (PMID: 10.7554/eLife.72171)
Dancy, B. M. et al. Live-cell studies of p300/CBP histone acetyltransferase activity and inhibition. Chem. Bio. Chem. 13, 2113–2121 (2012). (PMID: 2296191410.1002/cbic.201200381)
Subramanian, C. et al. Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Sci. Transl. Med. 13, eabf5965 (2021). (PMID: 34524863883002110.1126/scitranslmed.abf5965)
Zhao, S. et al. ATP-Citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016). (PMID: 27760311517540910.1016/j.celrep.2016.09.069)
Mostert, K. J. et al. The Coenzyme a level modulator hopantenate (HoPan) inhibits phosphopantotenoylcysteine synthetase activity. ACS Chem. Biol. 16, 2401–2414 (2021). (PMID: 34582681872601510.1021/acschembio.1c00535)
Sharma, S. et al. Abstract 1130: first-in-class KAT6A/KAT6B inhibitor CTx-648 (PF-9363) demonstrates potent anti-tumor activity in ER + breast cancer with KAT6A dysregulation. Cancer Res. 81, 1130–1130 (2021). (PMID: 10.1158/1538-7445.AM2021-1130)
Baell, J. B. et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560, 253–257 (2018). (PMID: 3006904910.1038/s41586-018-0387-5)
Liu, C. et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 75, 1413–1422 (2015). (PMID: 25649766438369510.1158/0008-5472.CAN-14-3080)
Herman, J. D. et al. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria. Genome Biol. 15, 511 (2014). (PMID: 25395010427254710.1186/s13059-014-0511-2)
Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009). (PMID: 19461003274674410.1126/science.1164097)
Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014). (PMID: 2499598010.1016/j.cell.2014.04.046)
Hay, D. A. et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc. 136, 9308–9319 (2014). (PMID: 24946055418365510.1021/ja412434f)
Mastracchio, A. et al. Discovery of a potent and selective covalent p300/CBP inhibitor. ACS Med. Chem. Lett. 12, 726–731 (2021). (PMID: 34055218815526510.1021/acsmedchemlett.0c00654)
Yau, E. H. & Rana, T. M. in Next Generation Sequencing: Methods and Protocols (eds. Head, S. R. et al.) 203–216 (Springer, 2018).
Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019). (PMID: 30710114686272110.1038/s41596-018-0113-7)
Sharma, L. K. et al. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat. Commun. 9, 4399 (2018). (PMID: 30352999619930910.1038/s41467-018-06703-2)
Frank, M. W., Subramanian, C., Rock, C. O. & Jackowski, S. Quantification of coenzyme A in cells and tissues. J. Vis. Exp. https://doi.org/10.3791/60182 (2019). (PMID: 10.3791/6018231633681)
معلومات مُعتمدة: DP5 OD026380 United States OD NIH HHS; P30 CA021765 United States CA NCI NIH HHS
سلسلة جزيئية: ClinicalTrials.gov NCT04606446
المشرفين على المادة: EC 2.3.1.48 (Histone Acetyltransferases)
EC 2.3.1.48 (p300-CBP Transcription Factors)
72-89-9 (Acetyl Coenzyme A)
EC 2.3.1.48 (KAT6A protein, human)
تواريخ الأحداث: Date Created: 20230501 Date Completed: 20230928 Latest Revision: 20240402
رمز التحديث: 20240402
مُعرف محوري في PubMed: PMC10538425
DOI: 10.1038/s41589-023-01320-7
PMID: 37127754
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-023-01320-7