دورية أكاديمية

Ancient human DNA recovered from a Palaeolithic pendant.

التفاصيل البيبلوغرافية
العنوان: Ancient human DNA recovered from a Palaeolithic pendant.
المؤلفون: Essel E; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. elena_essel@eva.mpg.de., Zavala EI; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.; Department of Biology, San Francisco State University, San Francisco, CA, USA.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA., Schulz-Kornas E; Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany., Kozlikin MB; Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia., Fewlass H; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Vernot B; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Shunkov MV; Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia., Derevianko AP; Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia., Douka K; Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.; Human Evolution and Archaeological Sciences (HEAS) Research Network, University of Vienna, Vienna, Austria., Barnes I; Earth Sciences Department, Natural History Museum, London, UK., Soulier MC; Maison de la Recherche, Université de Toulouse-Jean Jaurès, CNRS UMR 5608 TRACES, Toulouse, France., Schmidt A; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Szymanski M; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Tsanova T; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.; Department of Chemistry 'Giacomo Ciamician', Alma Mater Studiorum, University of Bologna, Bologna, Italy., Sirakov N; National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria., Endarova E; National Museum of History, Sofia, Bulgaria., McPherron SP; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Hublin JJ; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.; Chaire de Paléoanthropologie, Collège de France, Paris, France., Kelso J; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Pääbo S; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Hajdinjak M; Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany., Soressi M; Faculty of Archaeology, Leiden University, Leiden, The Netherlands. m.a.soressi@arch.leidenuniv.nl., Meyer M; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. mmeyer@eva.mpg.de.
المصدر: Nature [Nature] 2023 Jun; Vol. 618 (7964), pp. 328-332. Date of Electronic Publication: 2023 May 03.
نوع المنشور: Historical Article; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Bone and Bones*/chemistry , DNA, Ancient*/analysis , DNA, Ancient*/isolation & purification , Tooth*/chemistry, Animals ; Female ; Humans ; Archaeology/methods ; Deer/genetics ; DNA, Mitochondrial/analysis ; DNA, Mitochondrial/isolation & purification ; History, Ancient ; Siberia ; Caves ; Russia
مستخلص: Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals 1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited 2-5 . Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.
(© 2023. The Author(s).)
References: Bailey, G. Time perspectives, palimpsests and the archaeology of time. J. Anthropol. Archaeol. 26, 198–223 (2007).
Kuhn, S. & Stiner, M. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).
Nowell, A. Growing up in the Ice Age: Fossil and Archaeological Evidence of the Lived Lives of Plio-Pleistocene Children (Oxbow Books, 2021).
Owen, L. R. Distorting the Past: Gender and the Division of Labor in the European Upper Paleolithic (Kerns Verlag, 2005).
Villotte, S., Churchill, S. E., Dutour, O. J. & Henry-Gambier, D. Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies. J. Hum. Evol. 59, 35–43 (2010). (PMID: 20602985)
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017). (PMID: 28450384)
Zavala, E. I. et al. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature 595, 399–403 (2021). (PMID: 341630728277575)
Vernot, B. et al. Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments. Science 372, eabf1667 (2021). (PMID: 33858989)
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993). (PMID: 8469282)
Brundin, M., Figdor, D., Sundqvist, G. & Sjogren, U. DNA binding to hydroxyapatite: a potential mechanism for preservation of microbial DNA. J. Endod. 39, 211–216 (2013). (PMID: 23321233)
Korlevic, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015). (PMID: 26260087)
Rohland, N., Siedel, H. & Hofreiter, M. Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. Biotechniques 36, 814–821 (2004). (PMID: 15152601)
Gomes, C. et al. Nondestructive extraction DNA method from bones or teeth, true or false? Forensic Sci. Int. Genet. 5, e279–e282 (2015).
Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007). (PMID: 17641642)
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013). (PMID: 240194903785785)
Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016). (PMID: 26401836)
Salamon, M., Tuross, N., Arensburg, B. & Weiner, S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc. Natl Acad. Sci. USA 102, 13783–13788 (2005). (PMID: 161626751236542)
Essel, E., Korlevic, P. & Meyer, M. A method for the temperature-controlled extraction of DNA from ancient bones. Biotechniques 71, 382–386 (2021). (PMID: 34164993)
Schulz, E., Calandra, I. & Kaiser, T. M. Applying tribology to teeth of hoofed mammals. Scanning 32, 162–182 (2010). (PMID: 20949615)
Schulz-Kornas, E. et al. Everything matters: molar microwear texture in goats (Capra aegagrus hircus) fed diets of different abrasiveness. Palaeogeogr. Palaeoclimatol. Palaeoecol. 552, 109783 (2020).
Roussel, M., Soressi, M. & Hublin, J. J. The Chatelperronian conundrum: blade and bladelet lithic technologies from Quincay, France. J. Hum. Evol. 95, 13–32 (2016). (PMID: 27260172)
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012). (PMID: 229365683617501)
Gansauge, M. T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020). (PMID: 32612278)
Slon, V. et al. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel). Quatern. Int. 398, 210–218 (2015).
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007). (PMID: 177150611976210)
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016). (PMID: 276549125161557)
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012). (PMID: 229602123522152)
Petr, M., Vernot, B. & Kelso, J. admixr—R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194–3195 (2019). (PMID: 306686356736366)
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). (PMID: 24256729)
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). (PMID: 271359314943878)
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). (PMID: 204481785100745)
Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999). (PMID: 10508508)
Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008). (PMID: 186924652602844)
Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018). (PMID: 295622326485383)
Kay, P. C.A. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Welker, F. et al. Variations in glutamine deamidation for a Chatelperronian bone assemblage as measured by peptide mass fingerprinting of collagen. Sci. Technol. Archaeol. 3, 15–27 (2017).
Rendu, W. et al. Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of human populations to their environment. Sci. Rep. 9, 15817 (2019). (PMID: 316767996825241)
Fewlass, H. et al. A 14 C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020). (PMID: 32393865)
Hublin, J.-J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020). (PMID: 32433609)
Tsanova, T. et al. The Initial Upper Palaeolithic lithic assemblage from Bacho Kiro Cave (Bulgaria). In 9th Annual Meeting of the European Society for the Study of Human Evolution. 120 (2020).
Hofreiter, M. Nondestructive DNA extraction from museum specimens. Methods Mol. Biol. 840, 93–100 (2012). (PMID: 22237527)
Martisius, N. L. et al. Time wears on: assessing how bone wears using 3D surface texture analysis. PLoS ONE 13, e0206078 (2018). (PMID: 304037066221309)
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018). (PMID: 30323185)
Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1230–1237 (2017). (PMID: 284083825495074)
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012). (PMID: 22021376)
Zavala, E. I. et al. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol. Ecol. Resour. 22, 2196–2207 (2022). (PMID: 35263821)
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013). (PMID: 233416373568306)
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). (PMID: 257311665048219)
Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014). (PMID: 251008694191382)
Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007). (PMID: 172555511800929)
Peyregne, S. & Peter, B. M. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol. 21, 246 (2020). (PMID: 329335697490890)
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016). (PMID: 270849514987869)
Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019). (PMID: 309588126472827)
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). (PMID: 16862161)
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).
المشرفين على المادة: 0 (DNA, Ancient)
0 (DNA, Mitochondrial)
تواريخ الأحداث: Date Created: 20230503 Date Completed: 20230613 Latest Revision: 20230613
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10247382
DOI: 10.1038/s41586-023-06035-2
PMID: 37138083
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06035-2