دورية أكاديمية

A Study Against Colon Cancer Mechanism of Xanthium sibiricum Herba Based on Computer Simulation and Bioinformatics.

التفاصيل البيبلوغرافية
العنوان: A Study Against Colon Cancer Mechanism of Xanthium sibiricum Herba Based on Computer Simulation and Bioinformatics.
المؤلفون: Qi Y; Traditional Chinese Medicine College, Guangdong Pharmaceutical University Guangzhou, 510006, China., Cai JH; Traditional Chinese Medicine College, Guangdong Pharmaceutical University Guangzhou, 510006, China., Deng QT; Traditional Chinese Medicine College, Guangdong Pharmaceutical University Guangzhou, 510006, China., Zeng YN; Traditional Chinese Medicine College, Guangdong Pharmaceutical University Guangzhou, 510006, China., Wang QH; Traditional Chinese Medicine College, Guangdong Pharmaceutical University Guangzhou, 510006, China.; Key Laboratory of North Medicine Foundation and Application Research, Ministry of Education/Heilongjiang Key Laboratory of Pharmacodynamic Substances of Traditional Chinese Medicine and Natural Medicines, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Guangzhou, 510145, China.
المصدر: Combinatorial chemistry & high throughput screening [Comb Chem High Throughput Screen] 2024; Vol. 27 (12), pp. 1716-1734.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Bentham Science Publishers Country of Publication: United Arab Emirates NLM ID: 9810948 Publication Model: Print Cited Medium: Internet ISSN: 1875-5402 (Electronic) Linking ISSN: 13862073 NLM ISO Abbreviation: Comb Chem High Throughput Screen Subsets: MEDLINE
أسماء مطبوعة: Publication: Saif Zone, Sharjah, U.A.E. : Bentham Science Publishers
Original Publication: Hilversum, Netherlands ; Miami, FL : Bentham Science Publishers, c1998-
مواضيع طبية MeSH: Computational Biology* , Apoptosis*/drug effects , Xanthium*/chemistry , Colonic Neoplasms*/drug therapy , Colonic Neoplasms*/pathology , Molecular Docking Simulation*, Humans ; Proto-Oncogene Mas ; Antineoplastic Agents, Phytogenic/pharmacology ; Antineoplastic Agents, Phytogenic/chemistry ; Antineoplastic Agents, Phytogenic/isolation & purification ; Cell Proliferation/drug effects ; Molecular Dynamics Simulation ; Computer Simulation ; Drug Screening Assays, Antitumor
مستخلص: Introduction: Cancer is one of the leading causes of death worldwide, accounting for nearly one in six deaths in 2020. As a folk medicine, Xanthium sibiricum Herba (XSH) has been used many times in clinical practice for the treatment of various diseases. With the increasing number of cancer patients, there is a clinical need to find effective anti-cancer drugs.
Aim: This study aims to explores the bioactivity and the anti-cancer mechanism of XSH.
Methods: In this study, bioinformatics, network pharmacology, molecular docking, molecular dynamics simulation techniques, and apoptosis assay were used to explore the bioactivity and the anti- cancer mechanism of XSH.
Results: Finally, seven active ingredients in XSH after the screening were obtained, the two most active compounds were β-sitosterol and aloe-emodin, and good anti-cancer activity of XSH was predicted.
Discussion: Four core targets were obtained from the PPI network map, namely Caspase-3 (CASP3), Transcription factor AP-1 (JUN), Myc proto-oncogene protein (MYC), and cellular tumor antigen p53 (TP53). GO and KEGG analyses showed that the mechanism of XSH anti-cancer is mainly related to the apoptosis process, and the main signaling pathways are enriched in the p53 signaling pathway, Apoptosis, and MAPK signaling. The molecular docking and molecular dynamics simulation results showed that CASP3, JUN, MYC, and TP53 had a high affinity with β- sitosterol and aloe-emodin. Bioinformatics analyses demonstrated the importance of core targets. Apoptosis assay showed that XSH could significantly promote the apoptosis of cancer cells, and inhibit their proliferation and migration, especially colon cancer cells.
Conclusion: This study uncovered the main active components, bioactivities, and potential targets of XSH, and further revealed the multi-component, multi-target, and multi-pathway mechanism of XSH for cancer treatment and promoting apoptosis.
(Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
References: Jemal A.; Siegel R.; Xu J.; Ward E.; Cancer Statistics, 2010. CA Cancer J Clin 2010,60(5),277-300. (PMID: 10.3322/caac.2007320610543)
Jing H.; Wei Z.; Yong S.; Lunfang X.; Wei W.; Psychological distress among elderly patients with cancer. Chung Hua Hu Li Tsa Chih 2015,50(01),92-96. (PMID: 10.3761/j.issn.0254-1769.2015.01.022)
Weijin W.; Xiaolu Z.; Stat-quo and disease burden of cancer in china. China Policy Review 2019,04,63-73.
Ying Z.; Wei H.; Hongsheng L.; Clinical research results and thinking of traditional chinese medicine in the treatment of malignant tumors. J Tradit Chin Med 2014,55(06),523-525. (PMID: 10.13288/j.11-2166/r.2014.06.021)
Yıldırım M.A.; Goh K.I.; Cusick M.E.; Barabási A.L.; Vidal M.; Drug—target network. Nat Biotechnol 2007,25(10),1119-1126. (PMID: 10.1038/nbt133817921997)
Hopkins A.L.; Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol 2008,4(11),682-690. (PMID: 10.1038/nchembio.11818936753)
Hongjing T.; Famous doctors’ special book 1986.
Dictionary of traditional chinese medicine Nanjing University Of Chinese Medicine 2006.
Xiaoli J.; The pharmacognosy research of herba xanthii 2011.
Shen M.; Dietary herbal annotation 2007.
Chu-An W.; Materia medica is easy to read, People’s Medical Publishing House 1987.
Xin T.; Ting-Ting Z.; Mei-Jiao C.; Qiao C.; Nan X.; Study on the phenol constituents and antibacterial action of xanthium sibiricum. Zhong Yao Cai 2017,40(06),1326-1330. (PMID: 10.13863/j.issn1001-4454.2017.06.019)
Guo F.; Zeng Y.; Li J.; Inhibition of α-glucosidase activity by water extracts of Xanthium sibiricum Patrin ex Widder and their effects on blood sugar in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2013,42(6),632-637. (PMID: 10.3785/j.issn.1008-9292.2013.06.00724421228)
Li X.; Li Z.; Xue M.; Ou Z.; Liu M.; Yang M.; Liu S.; Yang S.; Li X.; Mihai C.; Fructus xanthii attenuates hepatic steatosis in rats fed on high-fat diet. PLoS One 2013,8(4),e61499. (PMID: 10.1371/journal.pone.006149923585904)
Tang J.; Aittokallio T.; Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 2014,20(1),23-36. (PMID: 10.2174/1381612811319999047023530504)
Ru J.; Li P.; Wang J.; Zhou W.; Li B.; Huang C.; Li P.; Guo Z.; Tao W.; Yang Y.; Xu X.; Li Y.; Wang Y.; Yang L.; TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014,6(1),13. (PMID: 10.1186/1758-2946-6-1324735618)
Xu X.; Zhang W.; Huang C.; Li Y.; Yu H.; Wang Y.; Duan J.; Ling Y.; A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012,13(6),6964-6982. (PMID: 10.3390/ijms1306696422837674)
Jiang L.; Shi Z.; Yang Y.; Network pharmacology-based approach to investigate the molecular targets of rhubarb for treating cancer. Evid Based Complement Alternat Med 2021,2021,9945633. (PMID: 10.1155/2021/9945633)
Zhou Y.; Zhou B.; Pache L.; Chang M.; Khodabakhshi A.H.; Tanaseichuk O.; Benner C.; Chanda S.K.; Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019,10(1),1523. (PMID: 10.1038/s41467-019-09234-630944313)
Szklarczyk D.; Gable A.L.; Nastou K.C.; Lyon D.; Kirsch R.; Pyysalo S.; Doncheva N.T.; Legeay M.; Fang T.; Bork P.; Jensen L.J.; von Mering C.; The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021,49(D1),D605-D612. (PMID: 10.1093/nar/gkaa107433237311)
Abraham M.J.; Murtola T.; Schulz R.; Páll S.; Smith J.C.; Hess B.; Lindahl E.; GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015,1-2,19-25. (PMID: 10.1016/j.softx.2015.06.001)
Yuan H.; Rui C.; Jixiong M.; Zhenning C.; Yang Z.; Screening of α-glucosidase inhibitors in alpine compositae extracts. Zhongguo Yaoke Daxue Xuebao 2008,39(6),4. (PMID: 10.3321/j.issn:1000-5048.2008.06.020)
Wolfe A.; Shimer G.H.; Meehan T.; Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987,26(20),6392-6396. (PMID: 10.1021/bi00394a0133427013)
Tang Z.; Li C.; Kang B.; Gao G.; Li C.; Zhang Z.; GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017,45(W1),W98-W102. (PMID: 10.1093/nar/gkx24728407145)
Hsin K.Y.; Ghosh S.; Kitano H.; Franca F.; Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 2013,8(12),e83922. (PMID: 10.1371/journal.pone.008392224391846)
Wang Y.; Shen J.; He Q.; Yang K.L.; He C.N.; Xiao P.G.; Material basis and mechanism of Huangqin Tea in prevention of colorectal cancer based on network pharmacology and molecular docking. Zhongguo Zhongyao Zazhi 2021,46(23),6251-6260. (PMID: 10.19540/j.cnki.cjcmm.20210916.40134951252)
Hua J.G.; Xiao-Li J.; Jun Z.; Fu-Rong Z.; Sha Y.; Jia-Ni C.; Antibacterial test of aqueous extract and acetone extract of xanthium sibiricum. Huaxi Yaoxue Zazhi 2011,26(04),345-346. (PMID: 10.13375/j.cnki.wcjps.2011.04.013)
Lu S.; Nuo H.J.; Jing Z.; Zijun Z.; Chao W.; Research status of death cause analysis of residents in my country. J Modern Med Heal 2018,34(19),3011-3014. (PMID: 10.3969/j.issn.1009-5519.2018.19.021)
Hanahan D.; Weinberg R.A.; Hallmarks of cancer: The next generation. Cell 2011,144(5),646-674. (PMID: 10.1016/j.cell.2011.02.01321376230)
Jing Z.; Xiaofang L.; Yu L.; Mingze W.; Research progress in cancer epidemiology and antitumor traditional chinese medicine. Shandong Chem Indus 2015,44(12),42-44. (PMID: 10.19319/j.cnki.issn.1008-021x.2015.12.020)
Yingchen H.; Medicinal value of cocklebur. J Pharm Pract 2005(03),262-263. (PMID: 10.14172/j.cnki.issn1671-4008.2005.03.056)
Guiying W.; Jikun T.; Acute toxicity test of cocklebur from guizhou. Brit Med J 2018,5(07),164-168. (PMID: 10.16281/j.cnki.jocml.2018.07.137)
Yuan S.; Nutriology, pharmacology and cardiovascular effects of Xanthium sibiricum. Prog Nutr 2020,22,370-377.
Zhang L.; Ruan J.; Yan L.; Li W.; Wu Y.; Tao L.; Zhang F.; Zheng S.; Wang A.; Lu Y.; Xanthatin induces cell cycle arrest at G2/M checkpoint and apoptosis via disrupting NF-κB pathway in A549 non-small-cell lung cancer cells. Molecules 2012,17(4),3736-3750. (PMID: 10.3390/molecules1704373622450683)
Takeda S.; Matsuo K.; Yaji K.; Okajima-Miyazaki S.; Harada M.; Miyoshi H.; Okamoto Y.; Amamoto T.; Shindo M.; Omiecinski C.J.; Aramaki H.; (--)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells. Chem Res Toxicol 2011,24(6),855-865. (PMID: 10.1021/tx200046s21568272)
Ya-Yun C.; Yu W.; Shui-Ying Y.; Jing M.; Gang C.; Gang C.; Anticancer effect of xanthium in vitro and in vivo in hepg2 of hepatocellular carcinoma. Chin J Integr Med 2019,14(07),946-949. (PMID: 10.13935/j.cnki.sjzx.190715)
Li W.D.; Wu Y.; Zhang L.; Yan L.G.; Yin F.Z.; Ruan J.S.; Chen Z.P.; Yang G.M.; Yan C.P.; Zhao D.; Lu Y.; Cai B.C.; Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo. Phytomedicine 2013,20(10),865-873. (PMID: 10.1016/j.phymed.2013.03.00623664560)
Zeli M.; Dongchen X.; Jian G.; Clinical observation on 38 cases of skin cancer treated with xanthicao ointment. J Gansu Uni Chinese Med 1999,16(1),2.
Weiliang L.; Yu J.; Aixiang H.; Research and development progress of β- sitosterol. Inf Process Agric 2019(01),77-79. (PMID: 10.16693/j.cnki.1671-9646(X).2019.01.022)
Shuai W.; Yu S.; Chunmei L.; Qun L.; Research progress of stigmasterol. China Pharmaceuticals 2019,28(23),96-98. (PMID: 10.3969/j.issn.1006-4931.2019.23.031)
Simin F.; Ke N.; Ping S.; Guoping R.; Peilong S.; Zisheng L.; Research on the β-sitosterol and stigmasterol therapeutic effect of acute colitis in mice. J Chin Cereals Oils Assoc 2018,33(12),80-86. (PMID: 10.3969/j.issn.1003-0174.2018.12.014)
Mu L.; Du Zhi-min, Research progress on pharmacological effects of aloe -emodin. Chin J Pharmacol 2015,31(09),765-768. (PMID: 10.13699/j.cnki.1001-6821.2015.09.027)
Zhang-Bin T.; You-Cai X.; Wen-Jun D.; Sui-Hui D.; Bin L.; Jing-Zhi Z.; Mechanism of aloe-emodin in inhibiting proliferation and migration of hepatocellular carcinoma cells. Zhongchengyao 2021,43(10),2653-2658. (PMID: 10.3969/j.issn.1001-1528.2021.10.009)
Chang H.W.; Liu P.F.; Tsai W.L.; Hu W.H.; Hu Y.C.; Yang H.C.; Lin W.Y.; Weng J.R.; Shu C.W.; Shu, Xanthium strumarium fruit extract inhibits atg4b and diminishes the proliferation and metastatic characteristics of colorectal cancer cells. Toxins 2019,11(6),313. (PMID: 10.3390/toxins1106031331159487)
Xiaohong P.; Qing Y.; Dysfunction of the tp53 in some lymphoid malignancies and blood cancer. Linchuang Zhongliuxue Zazhi 2014,19(02),186-190.
Gong Z.J.; Huang H.B.; Xu K.; Liang F.; Li X.L.; Xiong W.; Zeng Z.Y.; Li G.Y.; Advances in micrornas and tp53 gene regulatory network. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Jin Zhan 2013,39(12),1133-1144. (PMID: 10.3724/SP.J.1206.2012.00015)
Bin Sayeed M.S.; Ameen S.S.; Beta-sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr Cancer 2015,67(8),1216-1222. (PMID: 10.1080/01635581.2015.108704226473555)
Wang Z.; Zhan Y.; Xu J.; Wang Y.; Sun M.; Chen J.; Liang T.; Wu L.; Xu K.; B-sitosterol reverses multidrug resistance via bcrp suppression by inhibiting the p53–mdm2 interaction in colorectal cancer. J Agric Food Chem 2020,68(12),3850-3858. (PMID: 10.1021/acs.jafc.0c0010732167760)
Bae H.; Park S.; Ham J.; Song J.; Hong T.; Choi J.H.; Song G.; Lim W.; Er-mitochondria calcium flux by β-sitosterol promotes cell death in ovarian cancer. Antioxidants 2021,10(10),1583. (PMID: 10.3390/antiox1010158334679718)
Qiang Z.; Xin-Huai Z.; Phytosterol and its anticancer effect. Zhongguo Youzhi 2006(10),57-60.
Qian K.; Zheng X.X.; Wang C.; Huang W.G.; Liu X.B.; Xu S.D.; Liu D.K.; Liu M.Y.; Lin C.S.; B-sitosterol inhibits rheumatoid synovial angiogenesis through suppressing vegf signaling pathway. Front Pharmacol 2022,12,816477. (PMID: 10.3389/fphar.2021.81647735295740)
Sharmila R.; Sindhu G.; Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis. Indian J Clin Biochem 2017,32(2),142-152. (PMID: 10.1007/s12291-016-0583-828428688)
Lin K.Y.; Uen Y.H.; Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells. Oncol Lett 2010,1(3),541-547. (PMID: 10.3892/ol_0000009622966340)
Jiang D.; Ding S.; Mao Z.; You L.; Ruan Y.; Integrated analysis of potential pathways by which aloe-emodin induces the apoptosis of colon cancer cells. Cancer Cell Int 2021,21(1),238. (PMID: 10.1186/s12935-021-01942-833902610)
Abdellatef A.A.; Fathy M.; Mohammed A.E.S.I.; Bakr M.S.A.; Ahmed A.H.; Abbass H.S.; El-Desoky A.H.; Morita H.; Nikaido T.; Hayakawa Y.; Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. J Nat Med 2021,75(4),840-853. (PMID: 10.1007/s11418-021-01526-w33988779)
Suboj P.; Babykutty S.; Valiyaparambil Gopi D.R.; Nair R.S.; Srinivas P.; Gopala S.; Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur J Pharm Sci 2012,45(5),581-591. (PMID: 10.1016/j.ejps.2011.12.01222227305)
معلومات مُعتمدة: 2018YFC1707100 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: Xanthium sibiricum Herba; anti-cancer; bioinformatics.; colon cancer; molecular docking and molecular dynamics simulation; network pharmacology
المشرفين على المادة: 0 (Proto-Oncogene Mas)
0 (Antineoplastic Agents, Phytogenic)
0 (MAS1 protein, human)
تواريخ الأحداث: Date Created: 20230505 Date Completed: 20240715 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.2174/1386207326666230504154304
PMID: 37143277
قاعدة البيانات: MEDLINE
الوصف
تدمد:1875-5402
DOI:10.2174/1386207326666230504154304