دورية أكاديمية

Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.

التفاصيل البيبلوغرافية
العنوان: Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.
المؤلفون: Westereng B; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway. bjorge.westereng@nmbu.no., Arntzen MØ; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway., Østby H; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway., Agger JW; Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark., Vaaje-Kolstad G; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway., Eijsink VGH; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2657, pp. 27-51.
نوع المنشور: Review; Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Mixed Function Oxygenases*/metabolism , Polysaccharides*/metabolism, Chromatography, Liquid ; Mass Spectrometry ; Oxidation-Reduction ; Cellulose/metabolism ; Glycoside Hydrolases/metabolism
مستخلص: Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted towards the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.
(© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222. https://doi.org/10.1126/science.1192231. (PMID: 10.1126/science.119223120929773)
Loose JS, Forsberg Z, Fraaije MW, Eijsink VG, Vaaje-Kolstad G (2014) A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Lett 588(18):3435–3440. https://doi.org/10.1016/j.febslet.2014.07.036. (PMID: 10.1016/j.febslet.2014.07.03625109775)
Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VGH (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20(9):1479–1483. https://doi.org/10.1002/Pro.689. (PMID: 10.1002/Pro.689217488153190143)
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Stahlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6(11):e27807. https://doi.org/10.1371/journal.pone.0027807. (PMID: 10.1371/journal.pone.0027807221321483223205)
Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6(12):1399–1406. https://doi.org/10.1021/cb200351y. (PMID: 10.1021/cb200351y22004347)
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, Krogh KBRM, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15079–15084. https://doi.org/10.1073/pnas.1105776108. (PMID: 10.1073/pnas.1105776108218761643174640)
Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrom YH, Eijsink VG (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 1271(1):144–152. https://doi.org/10.1016/j.chroma.2012.11.048. (PMID: 10.1016/j.chroma.2012.11.04823246088)
Westereng B, Arntzen MØ, Aachmann FL, Várnai A, Eijsink VGH, Agger JW (2016) Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose. J Chromatogr A 1445:46–54. https://doi.org/10.1016/j.chroma.2016.03.064. (PMID: 10.1016/j.chroma.2016.03.06427059395)
Chen Y, Barreto V, Woodruff A, Lu Z, Liu Y, Pohl C (2018) Dual electrolytic eluent generation for oligosaccharides analysis using high-performance anion-exchange chromatography. Anal Chem 8(90):10910–10916. https://doi.org/10.1021/acs.analchem.8b02436. (PMID: 10.1021/acs.analchem.8b02436)
Østby H, Jameson J-K, Costa T, Eijsink VGH, Arntzen MØ (2022) Chromatographic analysis of oxidized cello-oligomers generated by lytic polysaccharide monooxygenases using dual electrolytic eluent generation. J Chromatogr A 1662:462691. https://doi.org/10.1016/j.chroma.2021.462691. (PMID: 10.1016/j.chroma.2021.46269134894418)
Coenen GJ, Bakx EJ, Verhoef RP, Schols HA, Voragen AGJ (2007) Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohyd Polym 70(2):224–235. (PMID: 10.1016/j.carbpol.2007.04.007)
Westereng B, Coenen GJ, Michaelsen TE, Voragen AGJ, Samuelsen AB, Schols HA, Knutsen SH (2009) Release and characterization of single side chains of white cabbage pectin and their complement-fixing activity. Mol Nutr Food Res 53(6):780–789. https://doi.org/10.1002/mnfr.200800199. (PMID: 10.1002/mnfr.20080019919205000)
Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289(5):2632–2642. https://doi.org/10.1074/jbc.M113.530196. (PMID: 10.1074/jbc.M113.53019624324265)
Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111(17):6287–6292. https://doi.org/10.1073/pnas.1323629111. (PMID: 10.1073/pnas.1323629111247339074035949)
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90. https://doi.org/10.1186/s13068-015-0274-3. (PMID: 10.1186/s13068-015-0274-3261368284487207)
Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(38):13822–13827. https://doi.org/10.1073/pnas.1408090111. (PMID: 10.1073/pnas.1408090111252019694183312)
Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961. https://doi.org/10.1038/ncomms6961. (PMID: 10.1038/ncomms696125608804)
Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SWA, Koetsier MJ, van Berkel WJH, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:12. https://doi.org/10.1186/s13068-015-0284-1. (PMID: 10.1186/s13068-015-0284-1)
Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VGH, Ludwig R (2016) Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. https://doi.org/10.1126/science.aaf3165.
Westereng B, Cannella D, Agger JW, Jorgensen H, Andersen ML, Eijsink VGH, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep-Uk 5:ARTN 18561. https://doi.org/10.1038/srep18561. (PMID: 10.1038/srep18561)
Cannella D, Mollers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C (2016) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun 7. https://doi.org/10.1038/ncomms11134.
Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938. https://doi.org/10.1074/jbc.M114.602227. (PMID: 10.1074/jbc.M114.602227253617674276861)
Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlic M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22(3):1591–1613. https://doi.org/10.1007/s10570-015-0586-2. (PMID: 10.1007/s10570-015-0586-2)
Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. https://doi.org/10.1146/annurev-biochem-060614-034439. (PMID: 10.1146/annurev-biochem-060614-03443925784051)
Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33(12):747–761. https://doi.org/10.1016/j.tibtech.2015.09.006. (PMID: 10.1016/j.tibtech.2015.09.00626472212)
Hemsworth GR, Davies GJ, Walton PH (2013) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23(5):660–668. https://doi.org/10.1016/j.sbi.2013.05.006. (PMID: 10.1016/j.sbi.2013.05.00623769965)
Cancilla MT, Wang AW, Voss LR, Lebrilla CB (1999) Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. Anal Chem 71(15):3206–3218. https://doi.org/10.1021/Ac9813484. (PMID: 10.1021/Ac981348410450162)
فهرسة مساهمة: Keywords: Aldonic acid; Gemdiol; High-performance anion-exchange chromatography; Hydrophilic interaction liquid chromatography; Lytic polysaccharide monooxygenase; Porous graphitized carbon
المشرفين على المادة: EC 1.- (Mixed Function Oxygenases)
0 (Polysaccharides)
9004-34-6 (Cellulose)
EC 3.2.1.- (Glycoside Hydrolases)
تواريخ الأحداث: Date Created: 20230506 Date Completed: 20230508 Latest Revision: 20230510
رمز التحديث: 20240628
DOI: 10.1007/978-1-0716-3151-5_3
PMID: 37149521
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3151-5_3