دورية أكاديمية

The identification of a robust leucine dehydrogenase from a directed soil metagenome for efficient synthesis of L-2-aminobutyric acid.

التفاصيل البيبلوغرافية
العنوان: The identification of a robust leucine dehydrogenase from a directed soil metagenome for efficient synthesis of L-2-aminobutyric acid.
المؤلفون: Liu Y; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Zhong X; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Luo Z; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Meng X; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Li R; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Zhong W; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Yang L; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Wang H; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China., Wei D; State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China.
المصدر: Biotechnology journal [Biotechnol J] 2023 Aug; Vol. 18 (8), pp. e2200590. Date of Electronic Publication: 2023 May 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 101265833 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1860-7314 (Electronic) Linking ISSN: 18606768 NLM ISO Abbreviation: Biotechnol J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
مواضيع طبية MeSH: Metagenome* , Aminobutyrates*/metabolism, Leucine Dehydrogenase/genetics ; Leucine Dehydrogenase/metabolism ; Biotechnology ; Leucine
مستخلص: L-2-aminobutyric acid (L-2-ABA) is a chiral precursor for the synthesis of anti-epileptic drug levetiracetam and anti-tuberculosis drug ethambutol. Asymmetric synthesis of L-2-ABA by leucine dehydrogenases has been widely developed. However, the limitations of natural enzymes, such as poor stability, low catalytic efficiency, and inhibition of high-concentration substrates, limit large-scale applications. Herein, by directed screening of a metagenomic library from unnatural amino acid-enriched environments, a robust leucine dehydrogenase, TvLeuDH, was identified, which exhibited high substrate tolerance and excellent enzymatic activity towards 2-oxobutyric acid. In addition, TvLeuDH has strong affinity for NADH. Subsequently, a three-enzyme co-expression system containing L-threonine deaminase, TvLeuDH, and glucose dehydrogenase was established. By optimizing reaction conditions, 1.5 M L-threonine could be converted to L-2-ABA with a 99% molar conversion rate and a space-time yield of 51.5 g·L -1 ·h -1 . In this process, no external coenzyme was added. The robustness of TvLeuDH allowed the reaction to be performed without the addition of extra salt as the buffer, demonstrating the simplest reaction system currently reported. These unique properties for the efficient and environmentally friendly production of chiral amino acids make TvLeuDH a particularly promising candidate for industrial applications, which reveals the great potential of directed metagenomics for industrial biotechnology.
(© 2023 Wiley-VCH GmbH.)
References: Leuchtenberger, W., Huthmacher, K., & Drauz, K. (2005). Biotechnological production of amino acids and derivatives: Current status and prospects. Applied Microbiology and Biotechnology, 69, 1-8.
Martínez-Granero, M., García-Pérez, A., & Montañes, F. (2010). Levetiracetam as an alternative therapy for Tourette syndrome. Neuropsychiatric Disease & Treatment, 6, 309-316.
Zhang, K., Li, H., Cho, K. M., & Liao, J. C. (2010). Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proceedings of the National Academy of Sciences of the United States of America, 107, 6234-6239.
Weber, N., Hatsch, A., Labagnere, L., & Heider, H. (2017). Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae. Microbial Cell Factories, 16, 51.
Xu, J. M., Li, J. Q., Zhang, B., Liu, Z. Q., & Zheng, Y. G. (2019). Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering. Microbial Cell Factories, 18, 43.
Liu, Y., Han, L., Cheng, Z., Liu, Z., & Zhou, Z. (2020). Enzymatic biosynthesis of l-2-aminobutyric acid by glutamate mutase coupled with l-aspartate-β-decarboxylase using l-glutamate as the sole substrate. ACS Catalysis, 10, 13913-13917.
Luo, W., Hu, J., Lu, J., Zhang, H., Wang, X., Liu, Y., Dong, L., & Yu, X. (2021). One pot cascade synthesis of L-2-aminobutyric acid employing ω-transaminase from Paracoccus pantotrophus. Molecular Catalysis, 515, 111890.
Zhang, Z., Liu, Y., Zhao, J., Li, W., Hu, R., Li, X., Li, A., Wang, Y., & Ma, L. (2021). Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of L-2-aminobutyric acid. BMC Biotechnology, 21, 55.
Chen, J., Xu, M., Yang, T., Zhang, X., Shao, M., Li, H., & Rao, Z. (2021). Rational design of the C-terminal Loop region of leucine dehydrogenase and cascade biosynthesis L-2-aminobutyric acid. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 37, 4254-4265.
Chen, J., Zhu, R., Zhou, J., Yang, T., Zhang, X., Xu, M., & Rao, Z. (2021). Efficient single whole-cell biotransformation for L-2-aminobutyric acid production through engineering of leucine dehydrogenase combined with expression regulation. Bioresource Technology, 326, 124665.
Wang, L., Diao, S., Sun, Y., Jiang, S., Liu, Y., Wang, H., & Wei, D. (2021). Rational engineering of Acinetobacter tandoii glutamate dehydrogenase for asymmetric synthesis of l-homoalanine through biocatalytic cascades. Catalysis Science & Technology, 11, 4208-4215.
Yin, X., Gong, W., Zhan, Z., Wei, W., Li, M., Jiao, J., Chen, B., Liu, L., Li, W., & Gao, Z. (2022). Mining and engineering of valine dehydrogenases from a hot spring sediment metagenome for the synthesis of chiral non-natural L-amino acids. Molecular Catalysis, 533.
Tao, R., Jiang, Y., Zhu, F., & Yang, S. (2014). A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase. Biotechnology Letters, 36, 835-841.
Xu, J. M., Cheng, F., Fu, F. T., Hu, H. F., & Zheng, Y. G. (2017). Semi-rational engineering of leucine dehydrogenase for L-2-aminobutyric acid production. Applied Biochemistry and Biotechnology, 182, 898-909.
Wu, J., Tang, X., Yang, G., Sun, B. y., & Yang, Q., 2010 4th International Conference on Bioinformatics and Biomedical Engineering 2010, pp. 1-4.
Bilal, T., Malik, B., & Hakeem, K. R. (2018). Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. Journal of Microbiological Methods, 155, 65-69.
Escuder-Rodriguez, J. J., DeCastro, M. E., Cerdan, M. E., Rodriguez-Belmonte, E., Becerra, M., & Gonzalez-Siso, M. I. (2018). Cellulases from thermophiles found by metagenomics. Microorganisms, 6.
Ahmad, T., Singh, R. S., Gupta, G., Sharma, A., & Kaur, B. (2019). Chapter 15 - Metagenomics in the Search for Industrial Enzymes. Advances in Enzyme Technology. R. S. Singh, R. R. Singhania, A. Pandey, & C. Larroche, (Eds.), Elsevier, pp. 419-451.
Streit, W., Chow, J., Jaeger, K.-E., Katzke, N., Koch, R., Borchert, M., Bj'rnvad, M., Roggenbuck, M., Lippold, F., & Golyshin, P. (2018). A metagenomic collection of novel and highly efficient biocatalysts for industrial biotechnology. Impact, 2018, 82-84.
Lou, J., Liu, M., Gu, J., Liu, Q., Zhao, L., Ma, Y., & Wei, D. (2019). Metagenomic sequencing reveals microbial gene catalogue of phosphinothricin-utilized soils in South China. Gene, 711, 143942.
Xie, Y., Wang, J., Yang, L., Wang, W., Liu, Q., Wang, H., & Wei, D. (2022). The identification and application of a robust ω-transaminase with high tolerance towards substrates and isopropylamine from a directed soil metagenome. Catalysis Science & Technology, 12, 2162-2175.
Leipold, L., Dobrijevic, D., Jeffries, J. W. E., Bawn, M., Moody, T. S., Ward, J. M., & Hailes, H. C. (2019). The identification and use of robust transaminases from a domestic drain metagenome. Green Chemistry, 21, 75-86.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cao, C. H., Gong, H., Dong, Y., Li, J. M., Cheng, F., Xue, Y. P., & Zheng, Y. G. (2021). Enzyme cascade for biocatalytic deracemization of D,L-phosphinothricin. Journal of Biotechnology, 325, 372-379.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252-W258.
Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201.
Brunhuber, N. M. W., Thoden, J. B., Blanchard, J. S., & Vanhooke, J. L. (2000). Rhodococcus L-phenylalanine dehydrogenase: Kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry, 39, 9174-9187.
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61, 3891-3898.
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455-461.
Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157-1174.
Meng, X., Yang, L., Liu, Y., Wang, H., Shen, Y., & Wei, D. (2021). Identification and rational engineering of a high substrate-tolerant leucine dehydrogenase effective for the synthesis of L- tert -Leucine. Chemcatchem, 13, 3340-3349.
Yin, J.-G., Gong, Y., Zhang, X.-Y., Zheng, G.-W., & Xu, J.-H. (2016). Green access to chiral Vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (−)-γ-lactamase. Catalysis Science & Technology, 6, 6305-6310.
Sekimoto, T., Matsuyama, T., Fukui, T., & Tanizawa, K. (1993). Evidence for lysine 80 as general base catalyst of leucine dehydrogenase. Journal of Biological Chemistry, 268, 27039-27045.
Zhou, J., Wang, Y., Xu, G., Wu, L., Han, R., Schwaneberg, U., Rao, Y., Zhao, Y.-L., Zhou, J., & Ni, Y. (2018). Structural insight into enantioselective inversion of an alcohol dehydrogenase reveals a “Polar Gate” in Stereorecognition of Diaryl Ketones. Journal of the American Chemical Society, 140, 12645-12654.
Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.MMPBSA.py : An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8, 3314-3321.
فهرسة مساهمة: Keywords: L-2-aminobutyric acid; leucine dehydrogenase; metagenomics; substrate tolerance
المشرفين على المادة: EC 1.4.1.9 (Leucine Dehydrogenase)
8306QPJ19P (alpha-aminobutyric acid)
0 (Aminobutyrates)
GMW67QNF9C (Leucine)
تواريخ الأحداث: Date Created: 20230507 Date Completed: 20230817 Latest Revision: 20230817
رمز التحديث: 20230817
DOI: 10.1002/biot.202200590
PMID: 37149736
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-7314
DOI:10.1002/biot.202200590