دورية أكاديمية

Modulation of the oxidative damage, inflammation, and apoptosis-related genes by dicinnamoyl-L-tartaric acid in liver cancer.

التفاصيل البيبلوغرافية
العنوان: Modulation of the oxidative damage, inflammation, and apoptosis-related genes by dicinnamoyl-L-tartaric acid in liver cancer.
المؤلفون: Elmetwalli A; Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt. dr.prof2011@gmail.com., Hashish SM; Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt., Hassan MG; Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt., El-Magd MA; Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt., El-Naggar SA; Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt., Tolba AM; Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt., Salama AF; Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
المصدر: Naunyn-Schmiedeberg's archives of pharmacology [Naunyn Schmiedebergs Arch Pharmacol] 2023 Nov; Vol. 396 (11), pp. 3087-3099. Date of Electronic Publication: 2023 May 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0326264 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1912 (Electronic) Linking ISSN: 00281298 NLM ISO Abbreviation: Naunyn Schmiedebergs Arch Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer Verlag.
مواضيع طبية MeSH: Carcinoma, Hepatocellular*/drug therapy , Carcinoma, Hepatocellular*/genetics , Carcinoma, Hepatocellular*/metabolism , Liver Neoplasms*/drug therapy , Liver Neoplasms*/genetics , Liver Neoplasms*/metabolism , Tartrates*, Humans ; Male ; Mice ; Animals ; Tumor Necrosis Factor-alpha/metabolism ; bcl-2-Associated X Protein/metabolism ; Beclin-1/metabolism ; Beclin-1/pharmacology ; Quality of Life ; Oxidative Stress ; Liver ; Inflammation/drug therapy ; Inflammation/genetics ; Inflammation/metabolism ; Antioxidants/pharmacology ; Apoptosis
مستخلص: Cancer cells can become resistant to existing treatments over time, so it is important to develop new treatments that target different pathways to stay ahead of this resistance. Many cancer treatments have severe side effects that can be debilitating and even life-threatening. Developing drugs that can effectively treat cancer while minimizing the risks of these side effects is essential for improving the quality of life of cancer patients. The study was designed to explore whether the combination of dicinnamoyl-L-tartaric (CLT) and sorafenib ((SOR), an anti-cancer drug)) could be used to treat hepatocellular carcinoma (HCC) in the animal model and to assess whether this combination would lead to changes in certain biomarkers associated with the tumour. In this study, 120 male mice were divided into 8 groups of 15 mice each. A number of biochemical parameters were measured, including liver functions, oxidative stress (malondialdehyde, (MDA); nitric oxide (NO)), and antioxidative activity (superoxide dismutase (SOD), and glutathione peroxidase (GPx)). Furthermore, the hepatic expressions of Bax, Beclin1, TNF-α, IL1β, and BCl-2 genes were evaluated by qRT-PCR. The combination of SOR and CLT was found to reduce the levels of liver enzymes, such as AST, ALT, ALP, and GGT, and reduce the pathological changes caused by DAB and PB. The upregulation of TNF-α, IL1β, and Bcl-2 genes suggests that the CLT was able to initiate an inflammatory response to combat the tumor, while the downregulation of the Bax and Beclin1 genes indicates that the CLT was able to reduce the risk of apoptosis in the liver. Furthermore, the combination therapy led to increased expression of cytokines, resulting in an enhanced anti-tumor effect.
(© 2023. The Author(s).)
References: Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI (2019) Sorafenib. In: Profiles of drug substances, excipients and related methodology. Elsevier, 239–266.
Akamatsu Y, Ikegami R (1968) Induction of hepatoma and systemic amyloidosis in mice by 4-(dimethylamino) azobenzene feeding. GANN Japanese J Cancer Res 59:201-206_2.
Alam MA, Subhan N, Hossain H et al (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (lond) 13:1–13. (PMID: 10.1186/s12986-016-0080-3)
Angulo I, Fresno M (2002) Cytokines in the pathogenesis of and protection against malaria. Clin Vaccine Immunol 9:1145–1152. (PMID: 10.1128/CDLI.9.6.1145-1152.2002)
Armitage P, Berry G, Matthews JNS (2008) Statistical methods in medical research. John Wiley & Sons.
Attia AA, Salama AF, Eldiasty JG et al (2022) Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Sci Rep 12:1–9. (PMID: 10.1038/s41598-022-10517-0)
Attri S, Rana S V, Vaiphie K, et al (2001) Protective effect of N-acetylcysteine in isoniazid induced hepatic injury in growing rats. NISCAIR 39: 436–440.
Aydinlik H, Nguyen TD, Moennikes O et al (2001) Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of β-catenin-mutated mouse liver tumors. Oncogene 20:7812–7816. (PMID: 1175366110.1038/sj.onc.1204982)
Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Arch Surg 391:499–510. (PMID: 10.1007/s00423-006-0073-1)
Belfield A, Goldberg D (1971) Colorimetric determination of alkaline phosphatase activity. Enzyme 12:561–568. (PMID: 516985210.1159/000459586)
Bergmeyer HU, Bowes GN, Hørder M, Moss DW (1976) Provisional recommendations on IFCC methods for the measurement of catalytic concentrations of enzymes Part 2. IFCC method for aspartate aminotransferase. Clin Chim Acta 70:F19–F42. https://doi.org/10.1016/0009-8981(76)90437-X. (PMID: 10.1016/0009-8981(76)90437-X954207)
Biswas SJ, Bhattacharjee N, Khuda-Bukhsh AR (2008) Efficacy of a plant extract (Chelidonium majus L.) in combating induced hepatocarcinogenesis in mice. Food Chem Toxicol 46:1474–1487. (PMID: 1821545010.1016/j.fct.2007.12.009)
Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022. https://doi.org/10.1002/hep.24199. (PMID: 10.1002/hep.2419921374666)
Chen X, Song E (2022) The theory of tumor ecosystem. Cancer Commun 42:587–608. (PMID: 10.1002/cac2.12316)
Da Cunha FM, Duma D, Assreuy J et al (2004) Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res 38:1241–1253. (PMID: 1562170210.1080/10715760400016139)
Deng H, Xu Q, Guo H-Y, et al (2022) Application of cinnamic acid in the structural modification of natural products: a review. Phytochemistry 206: 113–132.
Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446:475–482. (PMID: 1585629210.1007/s00428-005-1264-9)
Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31:87–96. (PMID: 554406510.1016/0009-8981(71)90365-2)
Elmalla A, Elmetwalli A, Rizk ME-S, Salama AF (2021) The effect of vitamin B17 on cardiomyopathy against Ehrlich tumor development in female mice. Biochem Lett 17:69–76. (PMID: 10.21608/blj.2021.198557)
El-Shehawy AA, Elmetwalli A, El-Far AH et al (2023) Thymoquinone, piperine, and sorafenib combinations attenuate liver and breast cancers progression: epigenetic and molecular docking approaches. BMC Complement Med Ther 23:1–21. (PMID: 10.1186/s12906-023-03872-6)
Espíndola KMM, Ferreira RG, Narvaez LEM, et al (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9: 5–41.
Fantini M, Benvenuto M, Masuelli L et al (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282. (PMID: 25918934446358710.3390/ijms16059236)
Firuzi O, Miri R, Tavakkoli M, Saso L (2011) Antioxidant therapy: current status and future prospects. Curr Med Chem 18:3871–3888. (PMID: 2182410010.2174/092986711803414368)
Fornari F, Giovannini C, Piscaglia F, Gramantieri L (2021) Elucidating the molecular basis of sorafenib resistance in HCC: current findings and future directions. J Hepatocell Carcinoma 8:741. (PMID: 34239844826017710.2147/JHC.S285726)
Han Y, Xue X-F, Shen H-G et al (2014) Prognostic significance of Beclin-1 expression in colorectal cancer: a meta-analysis. Asian Pacific J Cancer Prev 15:4583–4587. (PMID: 10.7314/APJCP.2014.15.11.4583)
Hoa NT, Van Ngoc LT, Vo QV (2022) The hydroperoxyl antiradical activity of natural hydroxycinnamic acid derivatives in physiological environments: the effects of pH values on rate constants. RSC Adv 12:15115–15122. https://doi.org/10.1039/d2ra02311c. (PMID: 10.1039/d2ra02311c357024309115882)
Huang C-Y, Lin C-S, Tai W-T et al (2013) Sorafenib enhances radiation-induced apoptosis in hepatocellular carcinoma by inhibiting STAT3. Int J Radiat Oncol Biol Phys 86:456–462. (PMID: 2347411510.1016/j.ijrobp.2013.01.025)
Huang X, You Y, Xi Y et al (2020) p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes. Inflammation 43:619–628. (PMID: 3182317910.1007/s10753-019-01142-7)
Ibrahim EA, Moawed FSM, Moustafa EM (2020) Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys 696:108658. (PMID: 3314408210.1016/j.abb.2020.108658)
Kancheva VD (2009) Phenolic antioxidants–radical-scavenging and chain-breaking activity: a comparative study. Eur J Lipid Sci Technol 111:1072–1089. (PMID: 10.1002/ejlt.200900005)
Kensler TW (1997) Chemoprevention by inducers of carcinogen detoxication enzymes. Environ Health Perspect 105:965–970. (PMID: 92555881470026)
Kensler TW, Trush MA (1984) Role of oxygen radicals in tumor promotion. Environ Mutagen 6:593–616. (PMID: 638104310.1002/em.2860060412)
Kim DW, Talati C, Kim R (2017) Hepatocellular carcinoma (HCC): beyond sorafenib—chemotherapy. J Gastrointest Oncol 8:256. (PMID: 28480065540185710.21037/jgo.2016.09.07)
Kobayashi K, Kawakami K, Yokokawa T et al (2019) Association of hand-foot skin reaction with regorafenib efficacy in the treatment of metastatic colorectal cancer. Oncology 96:200–206. (PMID: 3076394610.1159/000495989)
Labeur TA, Ten Cate DWG, Bart Takkenberg R et al (2018) Are we SHARP enough? The importance of adequate patient selection in sorafenib treatment for hepatocellular carcinoma. Acta Oncol (madr) 57:1467–1474. (PMID: 10.1080/0284186X.2018.1479070)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402–408.
Llovet JM, Castet F, Heikenwalder M et al (2022) Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 19:151–172. (PMID: 3476446410.1038/s41571-021-00573-2)
Man S, Luo C, Yan M et al (2021) Treatment for liver cancer: from sorafenib to natural products. Eur J Med Chem 224:113690. (PMID: 3425612410.1016/j.ejmech.2021.113690)
Mesbah L, Soraya B, Narimane S, Jean PF (2004) protective effect of flavonides against the toxicity of vinblastine cyclophosphamide and paracetamol by inhibition of lipid–peroxydation and increase of liver glutathione. Haematol 7:59–67.
Montogomery H, Dymock J (1961) The determination of nitrite in water: colorimetric method of nitric oxide assay. Analyst 86:414.
Murad LD, da Soares CPN, Brand C et al (2015) Effects of caffeic and 5-caffeoylquinic acids on cell viability and cellular uptake in human colon adenocarcinoma cells. Nutr Cancer 67:532–542. (PMID: 2580312910.1080/01635581.2015.1004736)
Murugan RS, Priyadarsini RV, Ramalingam K et al (2010) Intrinsic apoptosis and NF-κB signaling are potential molecular targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo. Food Chem Toxicol 48:3281–3287. (PMID: 2082859810.1016/j.fct.2010.09.002)
Nasser HM, El-Naggar SA, El-Sayed Rizk ME-SR et al (2021) Effect of Sorafenib on liver biochemistry prior to vitamin B17 coadministration in Ehrlich ascites carcinoma mice model: preliminary phase study. Biochem Lett 17:40–49. (PMID: 10.21608/blj.2021.184392)
Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854. (PMID: 440044410.1016/S0006-291X(72)80218-3)
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169. (PMID: 6066618)
Pang Y, Eresen A, Zhang Z et al (2022) Adverse events of sorafenib in hepatocellular carcinoma treatment. Am J Cancer Res 12:2770. (PMID: 358120689251699)
Park S-H, Ko J-W, Shin N-R et al (2017) 4-Hydroxycinnamic acid protects mice from cigarette smoke-induced pulmonary inflammation via MAPK pathways. Food Chem Toxicol 110:151–155. (PMID: 2905482410.1016/j.fct.2017.10.027)
Pathak S, Khuda-Bukhsh AR (2007) Assessment of hepatocellular damage and hematological alterations in mice chronically fed p-dimethyl aminoazobenzene and phenobarbital. Exp Mol Pathol 83:104–111. (PMID: 1718963110.1016/j.yexmp.2006.10.003)
Patlolla AK, Hackett D, Tchounwou PB (2015) Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399:257–268. (PMID: 2535515710.1007/s11010-014-2252-7)
Pradhan R, Paul S, Das B et al (2023) Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J Nutr Biochem 113:109257. (PMID: 3657206910.1016/j.jnutbio.2022.109257)
Rajkapoor B, Murugesh N, Chodon D, Sakthisekaran D (2005) Chemoprevention of N-nitrosodiethylamine induced phenobarbitol promoted liver tumors in rat by extract of Indigofera aspalathoides. Biol Pharm Bull 28:364–366. (PMID: 1568450110.1248/bpb.28.364)
Rosa LDS, Silva NJA, Soares NCP et al (2016) Anticancer properties of phenolic acids in colon cancer–a review. J Nutr Food Sci 6:1000468.
Sadeghi S, Davoodvandi A, Pourhanifeh MH et al (2019) Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur J Med Chem 178:131–140. (PMID: 3119516810.1016/j.ejmech.2019.05.067)
Sell S (2008) Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumor Biol 29:161–180. (PMID: 10.1159/000143402)
Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12:749–767. (PMID: 2251257810.2174/138955712801264792)
Suvarna SK, Layton C, Bancroft JD (2013) Theory and practice of histological techniques. Pbl London, Churchill Livingstone, Elsiver 173–187.
Szasz G (1974) γ-Glutamyltranspeptidase. Methods of enzymatic analysis 8: 715–720.
Thomas NS, George K, Namasivayam N (2016) Molecular aspects and chemoprevention of dimethylaminoazobenzene-induced hepatocarcinogenesis: a review. Hepatol Res 46:72–88. (PMID: 2627207110.1111/hepr.12569)
Verma IM (1981) 6 reverse transcriptase. The enzymes 11: 87–103.
Wang Z, Xu L, Duan Z et al (2007) Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol 107:107–113. (PMID: 1761744610.1016/j.ygyno.2007.05.034)
Wang L, Lu M, Yi M et al (2015) Caffeic acid attenuates the autocrine IL-6 in hepatocellular carcinoma via the epigenetic silencing of the NF-κB-IL-6-STAT-3 feedback loop. Rsc Adv 5:52952–52957. (PMID: 10.1039/C5RA05878C)
Whitby H, Gescher A, Levy L (1984) An investigation of the mechanism of hepatotoxicity of the antitumour agent N-methylformamide in mice. Biochem Pharmacol 33:295–302. (PMID: 670415110.1016/0006-2952(84)90488-X)
Xia P, Wang J-J, Zhao B-B, Song C-L (2013) The role of beclin-1 expression in patients with gastric cancer: a meta-analysis. Tumor Biol 34:3303–3307. (PMID: 10.1007/s13277-013-1049-8)
Yao J, Man S, Dong H et al (2018) Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol 183:159–166. (PMID: 2993297310.1016/j.jsbmb.2018.06.010)
Yasin BR, El-Fawal HAN, Mousa SA (2015) Date (Phoenix dactylifera) polyphenolics and other bioactive compounds: a traditional islamic remedy’s potential in prevention of cell damage, cancer therapeutics and beyond. Int J Mol Sci 16:30075–30090. (PMID: 26694370469115310.3390/ijms161226210)
Zou X, Fan W, Xue M, Li J (2021) Evaluation of the benefits of TACE combined with Sorafenib for hepatocellular carcinoma based on untreatable TACE (unTACEable) progression. Cancer Manag Res 4013–4029.
Zych M, Wojnar W, Dudek S, Kaczmarczyk-Sedlak I (2019) Rosmarinic and sinapic acids may increase the content of reduced glutathione in the lenses of estrogen-deficient rats. Nutrients 11:803. (PMID: 30970573652128210.3390/nu11040803)
فهرسة مساهمة: Keywords: Apoptosis; Dicinnamoyl-L-tartaric acid; Liver cancer; Oxidative stress; Sorafenib
المشرفين على المادة: W4888I119H (tartaric acid)
0 (Tumor Necrosis Factor-alpha)
0 (bcl-2-Associated X Protein)
0 (Beclin-1)
0 (Antioxidants)
0 (Tartrates)
تواريخ الأحداث: Date Created: 20230509 Date Completed: 20240415 Latest Revision: 20240419
رمز التحديث: 20240419
مُعرف محوري في PubMed: PMC10567854
DOI: 10.1007/s00210-023-02511-8
PMID: 37160480
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1912
DOI:10.1007/s00210-023-02511-8