دورية أكاديمية

Sf9 Cell Metabolism Throughout the Recombinant Baculovirus and Rabies Virus-Like Particles Production in Two Culture Systems.

التفاصيل البيبلوغرافية
العنوان: Sf9 Cell Metabolism Throughout the Recombinant Baculovirus and Rabies Virus-Like Particles Production in Two Culture Systems.
المؤلفون: Guardalini LGO; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Leme J; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., da Silva Cavalcante PE; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., de Mello RG; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Bernardino TC; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Jared SGS; Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Antoniazzi MM; Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Astray RM; Laboratório Multipropósito, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil., Tonso A; Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, 380, São Paulo, SP, 05508-900, Brazil., Núñez EGF; Grupo de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil., Jorge SAC; Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil. soraia.jorge@butantan.gov.br.
المصدر: Molecular biotechnology [Mol Biotechnol] 2024 Feb; Vol. 66 (2), pp. 354-364. Date of Electronic Publication: 2023 May 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مواضيع طبية MeSH: Rabies virus*/genetics , Rabies* , Ammonium Compounds*, Animals ; Sf9 Cells ; Glutamine ; Baculoviridae/genetics ; Recombinant Proteins/genetics ; Culture Media, Serum-Free ; Glutamic Acid ; Lactates ; Glucose ; Spodoptera
مستخلص: This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10 -12  mmol cell/h) in SF and for glutamine (30.8 × 10 -12  mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10 -10  mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Gold, S., Donnelly, C. A., Nouvellet, P., & Woodroffe, R. (2020). Rabies virus-neutralising antibodies in healthy, unvaccinated individuals: What do they mean for rabies epidemiology? PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0007933. (PMID: 10.1371/journal.pntd.0007933320536287017994)
Evans, J. S., Horton, D. L., Easton, A. J., Fooks, A. R., & Banyard, A. C. (2012). Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine, 30(52), 7447–7454. https://doi.org/10.1016/J.VACCINE.2012.10.015. (PMID: 10.1016/J.VACCINE.2012.10.01523084854)
Wunner, W. H., & Briggs, D. J. (2010). Viewpoints rabies in the 21st century. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0000591. (PMID: 10.1371/journal.pntd.0000591203610282846934)
Stitz, L., et al. (2017). A thermostable messenger RNA based vaccine against rabies. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0006108. (PMID: 10.1371/journal.pntd.0006108292161875737050)
Yang, D.-K., Kim, H.-H., Lee, K.-W., & Song, J.-Y. (2013). The present and future of rabies vaccine in animals. Clinical and Experimental Vaccine Research, 2(1), 19–25. https://doi.org/10.7774/CEVR.2013.2.1.19. (PMID: 10.7774/CEVR.2013.2.1.19235965863623496)
Ghorbani, A., Zare, F., Sazegari, S., Afsharifar, A., Eskandari, M. H., & Pormohammad, A. (2020). Development of a novel platform of virus-like particle (VLP)-based vaccine against COVID-19 by exposing epitopes: an immunoinformatics approach. New Microbes and New Infections. https://doi.org/10.1016/J.NMNI.2020.100786. (PMID: 10.1016/J.NMNI.2020.100786330723387556220)
Keller, S. A., Bauer, M., Manolova, V., Muntwiler, S., Saudan, P., & Bachmann, M. F. (2010). Cutting edge: Limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles. The Journal of Immunology, 184(1), 26–29. https://doi.org/10.4049/JIMMUNOL.0901540. (PMID: 10.4049/JIMMUNOL.090154019949081)
Tan, M., & Jiang, X. (2017). “Recent advancements in combination subunit vaccine development. Human Vaccines & Immunotherapeutics, 13(1), 180–185. https://doi.org/10.1080/21645515.2016.1229719. (PMID: 10.1080/21645515.2016.1229719)
Jeong, H., & Seong, B. L. (2017). Exploiting virus-like particles as innovative vaccines against emerging viral infections. Journal of Microbiology, 55, 3. https://doi.org/10.1007/S12275-017-7058-3. (PMID: 10.1007/S12275-017-7058-3)
Qian, C., et al. (2020). Recent progress on the versatility of virus-like particles. Vaccines, 8(1), 139. https://doi.org/10.3390/VACCINES8010139. (PMID: 10.3390/VACCINES8010139322449357157238)
Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781. https://doi.org/10.1016/J.BIOTECHADV.2012.01.009. (PMID: 10.1016/J.BIOTECHADV.2012.01.009222971337132753)
Fernandes, F., Teixeira, A. P., Carinhas, N., Carrondo, M. J. T., & Alves, P. M. (2014). Insect cells as a production platform of complex virus-like particles. Expert Review of Vaccines, 12, 225–236. https://doi.org/10.1586/ERV.12.153. (PMID: 10.1586/ERV.12.153)
Drugmand, J. C., Schneider, Y. J., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157. https://doi.org/10.1016/J.BIOTECHADV.2011.09.014. (PMID: 10.1016/J.BIOTECHADV.2011.09.01421983546)
Drews, M., Paalme, T., & Vilu, R. (1995). The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. Journal of Biotechnology, 40(3), 187–198. https://doi.org/10.1016/0168-1656(95)00045-R. (PMID: 10.1016/0168-1656(95)00045-R)
Palomares, L. A., López, S., & Ramírez, O. T. (2004). Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochemical Engineering Journal, 19(1), 87–93. https://doi.org/10.1016/J.BEJ.2003.12.002. (PMID: 10.1016/J.BEJ.2003.12.002)
Wong, T. K. K., Nielsen, L. K., Greenfield, P. F., & Reid, S. (1994). Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology, 15(1), 157–167. https://doi.org/10.1007/BF00762390. (PMID: 10.1007/BF007623907765927)
Bernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/BIT.22364. (PMID: 10.1002/BIT.2236419459142)
Drews, M., et al. (2000). Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: Evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. Journal of Biotechnology, 78(1), 23–37. https://doi.org/10.1016/S0168-1656(99)00231-X. (PMID: 10.1016/S0168-1656(99)00231-X10702908)
Öhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917. (PMID: 10.1007/BF001669178590651)
Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., & Carrondo, M. J. T. (2000). Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enyzme and Microbial Technology, 27(1–2), 43–52. https://doi.org/10.1016/S0141-0229(00)00151-4. (PMID: 10.1016/S0141-0229(00)00151-4)
Bédard, C., Perret, S., & Kamen, A. A. (1997). Fed-batch culture of Sf-9 cells supports 3 3 10 7 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnology Letters, 19(7), 629–632. https://doi.org/10.1023/A:1018378529299. (PMID: 10.1023/A:1018378529299)
Martinelle, K., Westlund, A., & Haggstrom, L. (1996). Ammonium ion transport—A cause of cell death. Cytotechnology, 22(1), 251–254. https://doi.org/10.1007/BF00353945. (PMID: 10.1007/BF0035394522358935)
Schneider, M., Marison, I. W., & von Stockar, U. (1996). The importance of ammonia in mammalian cell culture. Journal of Biotechnology, 46(3), 161–185. https://doi.org/10.1016/0168-1656(95)00196-4. (PMID: 10.1016/0168-1656(95)00196-48672289)
Ventini-Monteiro, D., Dubois, S., Astray, R. M., Castillo, J., & Pereira, C. A. (2015). Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. Journal of Biotechnology, 216, 110–115. https://doi.org/10.1016/J.JBIOTEC.2015.10.013. (PMID: 10.1016/J.JBIOTEC.2015.10.01326481831)
Bernardino, T. C., et al. (2021). Production of rabies VLPs in insect cells by two monocistronic baculoviruses approach. Molecular Biotechnology, 63(11), 1068–1080. https://doi.org/10.1007/S12033-021-00366-Z. (PMID: 10.1007/S12033-021-00366-Z34228257)
Hopkins, R. F., & Esposito, D. (2009). A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line. BioTechniques, 47(3), 785–788. https://doi.org/10.2144/000113238. (PMID: 10.2144/00011323819852765)
Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/BTPR.1842. (PMID: 10.1002/BTPR.184224265112)
Palomares, L. A., Mena, J. A., & Ramírez, O. T. (2012). Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: Production of virus-like particles. Methods, 56(3), 389–395. https://doi.org/10.1016/J.YMETH.2012.01.004. (PMID: 10.1016/J.YMETH.2012.01.00422300754)
Wong, K. T., Peter, C. H., Greenfield, P. F., Reid, S., & Nielsen, L. K. (1996). Low multiplicity infection of insect cells with a recombinant baculovirus: The cell yield concept. Biotechnology and Bioengineering, 49(6), 659–666. (PMID: 10.1002/(SICI)1097-0290(19960320)49:6<659::AID-BIT7>3.0.CO;2-N18626861)
Guardalini, L. G., Cavalcante, P. E., Leme, J., Mello, R. G., Bernardino, T. C., Jared, S. G., Antoniazzi, M. M., Astray, R. M., Tonso, A., Fernández Núñez, E. G., & Jorge, S. A. (2022). Performance comparison of recombinant baculovirus and rabies virus-like particles production using two culture platforms. Vaccines, 11(1), 39. https://doi.org/10.3390/vaccines11010039. (PMID: 10.3390/vaccines11010039366798849867115)
Saxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: Integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151–1171. https://doi.org/10.1099/JGV.0.001108/CITE/REFWORKS. (PMID: 10.1099/JGV.0.001108/CITE/REFWORKS30027883)
Roche, S., & Gaudin, Y. (2002). Characterization of the Equilibrium between the Native and Fusion-Inactive Conformation of Rabies Virus Glycoprotein Indicates That the Fusion Complex Is Made of Several Trimers. Virology, 297(1), 128–135. https://doi.org/10.1006/viro.2002.1429. (PMID: 10.1006/viro.2002.142912083843)
Gaudin, Y., Tuffereau, C., Segretain, D., Knossow, M., & Flamand, A. (1991). Reversible conformational changes and fusion activity of rabies virus glycoprotein. Journal of Virology, 65(9), 4853–4859. https://doi.org/10.1128/JVI.65.9.4853-4859.1991. (PMID: 10.1128/JVI.65.9.4853-4859.19911870204248944)
Yang, F., et al. (2020). Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational changes and interactions with a neutralizing antibody. Cell Host & Microbe, 27(3), 441-453.e7. https://doi.org/10.1016/j.chom.2019.12.012. (PMID: 10.1016/j.chom.2019.12.012)
معلومات مُعتمدة: 2018/10538-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2016/22780-6 Fundação de Amparo à Pesquisa do Estado de São Paulo; 168539/2018-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Insect cell metabolism; Rabies virus-like particles; Recombinant baculovirus; Sf9 cells; Stirred tank bioreactor; Viral infection
المشرفين على المادة: 0RH81L854J (Glutamine)
0 (Recombinant Proteins)
0 (Culture Media, Serum-Free)
3KX376GY7L (Glutamic Acid)
0 (Lactates)
IY9XDZ35W2 (Glucose)
0 (Ammonium Compounds)
تواريخ الأحداث: Date Created: 20230510 Date Completed: 20240124 Latest Revision: 20240124
رمز التحديث: 20240124
DOI: 10.1007/s12033-023-00759-2
PMID: 37162721
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-023-00759-2