دورية أكاديمية

Structural and functional insights into the flexible β-hairpin of glycerol dehydrogenase.

التفاصيل البيبلوغرافية
العنوان: Structural and functional insights into the flexible β-hairpin of glycerol dehydrogenase.
المؤلفون: Park T; Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Korea.; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea., Hoang HN; Department of Molecular Medicine, Chonnam National University, Gwangju, Korea.; Hanoi Medical University, Hanoi, Vietnam., Kang JY; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea., Park J; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea., Mun SA; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea., Jin M; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea., Yang J; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea., Jung CH; Department of Molecular Medicine, Chonnam National University, Gwangju, Korea.; Department of Chemistry, Chonnam National University, Gwangju, Korea., Eom SH; Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Korea.; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea.
المصدر: The FEBS journal [FEBS J] 2023 Sep; Vol. 290 (17), pp. 4342-4355. Date of Electronic Publication: 2023 May 19.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
مواضيع طبية MeSH: NAD*/metabolism , Sugar Alcohol Dehydrogenases*/genetics , Sugar Alcohol Dehydrogenases*/chemistry , Sugar Alcohol Dehydrogenases*/metabolism, Glycerol/metabolism ; Oxidation-Reduction ; Escherichia coli/genetics ; Escherichia coli/metabolism ; Kinetics ; Glutamate Dehydrogenase/metabolism
مستخلص: During glycerol metabolism, the initial step of glycerol oxidation is catalysed by glycerol dehydrogenase (GDH), which converts glycerol to dihydroxyacetone in a NAD + -dependent manner via an ordered Bi-Bi kinetic mechanism. Structural studies conducted with GDH from various species have mainly elucidated structural details of the active site and ligand binding. However, the structure of the full GDH complex with both cofactor and substrate bound is not determined, and thus, the structural basis of the kinetic mechanism of GDH remains unclear. Here, we report the crystal structures of Escherichia coli GDH with a substrate analogue bound in the absence or presence of NAD + . Structural analyses including molecular dynamics simulations revealed that GDH possesses a flexible β-hairpin, and that during the ordered progression of the kinetic mechanism, the flexibility of the β-hairpin is reduced after NAD + binding. It was also observed that this alterable flexibility of the β-hairpin contributes to the cofactor binding and possibly to the catalytic efficiency of GDH. These findings suggest the importance of the flexible β-hairpin to GDH enzymatic activity and shed new light on the kinetic mechanism of GDH.
(© 2023 Federation of European Biochemical Societies.)
References: Hempfling WP & Mainzer SE (1975) Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J Bacteriol 123, 1076-1087.
Wang X, Xia K, Yang X & Tang C (2019) Growth strategy of microbes on mixed carbon sources. Nat Commun 10, 1279.
da Silva GP, Mack M & Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27, 30-39.
Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Gosset G, Encarnacion S & Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11, 46.
Lin EC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30, 535-578.
Scharschmidt M, Pfleiderer G, Metz H & Brummer W (1983) Isolation and characterization of glycerol dehydrogenase from Bacillus megaterium. Hoppe Seylers Z Physiol Chem 364, 911-921.
Nishise H, Nagao A, Tani Y & Yamada H (1984) Further characterization of glycerol dehydrogenase from Celluomonas sp. NT3060. Agric Biol Chem 48, 1603-1609.
Leichus BN & Blanchard JS (1994) Isotopic analysis of the reaction catalyzed by glycerol dehydrogenase. Biochemistry 33, 14642-14649.
Wang L, Wang J, Shi H, Gu H, Zhang Y, Li X & Wang F (2016) Characterization of glycerol dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG motif identification. J Microbiol Biotechnol 26, 1077-1086.
Spencer P, Bown KJ, Scawen MD, Atkinson T & Gore MG (1989) Isolation and characterisation of the glycerol dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta 994, 270-279.
Tang CT, Ruch FE Jr & Lin CC (1979) Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism. J Bacteriol 140, 182-187.
Gärtner G & Kopperschläger G (1984) Purification and properties of glycerol dehydrogenase from Candida valida. J Gen Microbiol 130, 3225-3233.
Hoang HN, Tran TT & Jung C (2019) The activation of glycerol dehydrogenase from Escherichia coli by ppGpp. Bull Korean Chem Soc 41, 133-138.
McGregor WG, Phillips J & Suelter CH (1974) Purification and kinetic characterization of a monovalent cation-activated glycerol dehydrogenase from Aerobacter aerogenes. J Biol Chem 249, 3132-3139.
Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG & Rice DW (2001) Glycerol dehydrogenase. Structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9, 789-802.
Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T et al. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 99, 11664-11669.
Zhang J, Nanjaraj Urs AN, Lin L, Zhou Y, Hu Y, Hua G, Gao Q, Yuchi Z & Zhang Y (2019) Structure of glycerol dehydrogenase (GldA) from Escherichia coli. Acta Crystallogr F Struct Biol Commun 75, 176-183.
Musille P & Ortlund E (2014) Structure of glycerol dehydrogenase from Serratia. Acta Crystallogr F Struct Biol Commun 70, 166-172.
Hatti K, Mathiharan YK, Srinivasan N & Murthy MRN (2017) Seeing but not believing: the structure of glycerol dehydrogenase initially assumed to be the structure of a survival protein from Salmonella typhimurium. Acta Crystallogr D 73, 609-617.
Chauliac D, Wang Q, St John FJ, Jones G, Hurlbert JC, Ingram LO & Shanmugam KT (2020) Kinetic characterization and structure analysis of an altered polyol dehydrogenase with d-lactate dehydrogenase activity. Protein Sci 29, 2387-2397.
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE & Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26, 1701-1718.
Ko GS, Nguyen QT, Kim DH & Yang JK (2020) Biochemical and molecular characterization of glycerol dehydrogenase from Klebsiella pneumoniae. J Microbiol Biotechnol 30, 271-278.
Morgunov IG & Ilchenko AP (1995) Isolation, purification, and some properties of glycerol dehydrogenase from the yeast Candida valida. Biochemistry 60, 659-664.
Piattoni CV, Figueroa CM, Diez MDA, Parcerisa IL, Antuna S, Comelli RA, Guerrero SA, Beccaria AJ & Iglesias AA (2013) Production and characterization of Escherichia coli glycerol dehydrogenase as a tool for glycerol recycling. Process Biochem 48, 406-412.
Raghava S & Gupta MN (2010) Purification and characterization of an alcohol dehydrogenase with an unusual specificity towards glycerol from Thermus thermophilus. Bioresour Technol 101, 2554-2557.
Beauchamp J, Gross PG & Vieille C (2014) Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone. Appl Microbiol Biotechnol 98, 7039-7050.
Zhang HF, Lountos GT, Ching CB & Jiang RR (2010) Engineering of glycerol dehydrogenase for improved activity towards 1, 3-butanediol. Appl Microbiol Biotechnol 88, 117-124.
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ & Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5, 593-599.
Tang JC, Forage RG & Lin EC (1982) Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae. J Bacteriol 152, 1169-1174.
Kabsch W (2010) XDS. Acta Crystallogr D 66, 125-132.
Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D 62, 72-82.
Evans PR & Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69, 1204-1214.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40, 658-674.
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355-367.
Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486-501.
Aliev AE, Kulke M, Khaneja HS, Chudasama V, Sheppard TD & Lanigan RM (2014) Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics. Proteins 82, 195-215.
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE & Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11, 3696-3713.
Sousa da Silva AW & Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5, 367.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW & Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926-935.
Hess B, Bekker H, Berendsen HJC & Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18, 1463-1472.
Darden T, York DM & Pedersen LG (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98, 10089-10092.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H & Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103, 8577-8593.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A & Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684-3690.
Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81, 511-519.
Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys 31, 1695-1697.
Parrinello M & Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52, 7182-7190.
Nosé S & Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50, 1055-1076.
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261-272.
Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New York, NY.
فهرسة مساهمة: Keywords: crystal structure; glycerol dehydrogenase; kinetics; molecular dynamics simulation; ordered Bi-Bi mechanism
المشرفين على المادة: EC 1.1.1.6 (glycerol dehydrogenase)
0U46U6E8UK (NAD)
PDC6A3C0OX (Glycerol)
EC 1.1.- (Sugar Alcohol Dehydrogenases)
EC 1.4.1.2 (Glutamate Dehydrogenase)
تواريخ الأحداث: Date Created: 20230511 Date Completed: 20230911 Latest Revision: 20230914
رمز التحديث: 20240829
DOI: 10.1111/febs.16813
PMID: 37165682
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4658
DOI:10.1111/febs.16813